The effects of the additions of Co, Zr on microstructure and magnetic properties were studied for hot-deformed (HD) nanocomposite Nd11.5Fe81.5-xNb1CoxB6 (x=0, 2, 4, 8) and Nd11.5Fe82.5-xZrxB6 (x=0, 1) magnets, respectively. The remanence of hot-pressed (HP) magnets increased with increasing Co content firstly, but decreased when Co content was more than 2 at. % for HD magnets. Also the intrinsic coercivity (Hci) and maximum energy product ((BH)m) of HD alloys increased firstly, and then decreased with further increasing Co content. The maximum (BH)m of 24 MGOe was obtained at 2 at.% Co addition. Zr addition can improve significantly the c-axis alignment and magnetic properties of HD nanocomposite magnets, and HD Nd11.5Fe81.5Zr1B6 magnet with 1.5 wt.% Zn addition showed enhanced properties with Hci of 7100 Oe and remanent magnetization (Mr) of 1.06 T. The alloys have the structure of plate-like grains, but there are still many coarse grains, which may result from the un-uniform composition in the alloy.