“…This forces the quick dehydration of the system and water is released out of the hydrogel with a large gain in entropy, resulting in shrinkage of the polymeric structure (Kopecek, 2003;Ruel-Gariepy & Leroux 2004). The mostly studied temperature responsive hydrogels are methylcellulose (Stabenfeldt et al 2006), hydroxypropyl methylcellulose (Vinatier et al, 2005), chitosan (Zan et al, 2006), Nisopropylacrylamide (NIPAAm) based copolymers (Lu et al, 2000;Kim et al, 2002;Schmaljohann, 2005;Lee et al, 2006;Qiao et al, 2006) and other N-alkylacrylamide polymers (Hirokawa & Tanaka, 1984), poly(vinyl methyl ether) (PVME) (Kabra et al, 1992;Arndt, Schmidt et al 2001;Theiss et al 2004), poly(N-vinylisobutyramide) (PNVIBA) (Akashi et al, 1996;Kunugi et al, 1997;, poly(ethylene oxide-bpropylene oxide-b-ethylene oxide) (PEO-PPO-PEO) (Bohorquez et al, 1999;Song, Lee et al, 2000), and poly(ethylene oxide)/(D,L-lactic acid-co-glycolic acid) (PEO-PLLA-PLGA) (Jeong et al, 1997) copolymers. Poly(N-isopropylacrylamide) (PNIPAAm) is the most popular temperature-responsive polymer since it exhibits a sharp phase transition in water at 34.3 o C which is close to physiological temperature .…”