The harlequin ladybird, Harmonia axyridis, is an important natural enemy of aphids throughout the world, but is now also considered an invasive alien species. We performed a meta-analysis of published life history data to address the question whether invading populations in Europe and North America have life history parameters that differ from native populations in Asia, explaining the beetle's invasion success in new territories. In this metaanalysis, we accounted for important covariables that are often reported in published studies such as temperature, food source (aphids or eggs of Ephestia kuehniella), strain (laboratory or field populations) and photoperiod. Temperature was a key factor having consistent large effects on development rate, survival and reproductive characteristics of H. axyridis. Food source, strain, and photoperiod had effects on some, but not all characteristics, and their overall effect across characteristics was minor. Individuals of invasive populations had a shorter pre-oviposition period and higher fecundity at low temperatures than those of native populations, and a greater longevity across all temperatures. No differences in survival were found between native and invasive populations, while differences in development rate were not consistent, with opposing results obtained according to the way development rate was measured in trials reported in the literature. Results of this meta-analysis support the hypothesis that the life history of the beetle has changed during its invasion into North America and Europe. Invasive populations had a shorter preoviposition period and higher fecundity at low temperatures, as well as a greater longevity across all temperatures than native populations. These differences may partially explain the invasive success of H. axyridis.Handling Editor: Peter Brown.Electronic supplementary material The online version of this article