In the recent years, challenges faced in salmonid farming with regard to deformities have helped to improve our knowledge on skeletal biology and development of bone health in salmonids. Different nutritional, genetic and environmental factors are associated with skeletal deformities in salmonids and other fish species. Minerals are a group of essential nutrients having a vital role to play in skeletal development, growth and remodelling. The knowledge generated thus far on the structural and functional importance of minerals in salmonid bone health is largely restricted to phosphorus. A brief account of dietary phosphorus-related bone deformities encountered in salmonids, critical life stages for the development of bone deformities, recent developments in the understanding of their aetiology and dietary phosphorus levels required to improve bone health are presented. The effect of increased dietary level of phosphorus in reducing bone health disorders under conditions of improved feed conversion efficiency and use of triploids in salmon farming are illustrated with help of metadata analysis from literature. With regard to the role of other essential minerals (macro-and micro-) impacting bone health in salmonids, data available are extremely limited and hence information on other fish species and mammals is summarized in relation to bone development and incidence of deformities. The need to improve mineral bioavailability, utilization and reduce effluent mineral load is presented in brief with example from Norwegian salmon farming. Refinements in mineral requirement recommendations for salmonids and advanced methodologies for studying aetiology of skeletal anomalies, bone mineral status, skeletal development and deformities are also discussed.