Polyphenols and their derivates, a kind of natural product distributed in herb plants, vegetables, and fruits, are the most abundant antioxidants in the human diet and have been found to display cancer-preventative effects in several epidemiological studies. The scientific community has also validated the anti-cancer bioactivities and low toxicities of polyphenolic compounds, including flavones, tannins, phenolic acids, and anthocyanins, through in vitro and in vivo studies. However, the low stability, weak targeting ability, poor solubility, and low bioavailability of pure polyphenolic agents have significantly impaired their treatment efficacy. Nowadays, nano-based technology has been applied to surmount these restrictions and maximize the treatment efficacy of polyphenols. In this review, we summarize the advantages and related mechanisms of polyphenols in cancer treatment. Moreover, aiming at the poor solubility and low bioavailability of pure polyphenols in vivo, the advantages of nano-based delivery systems and recent research developments are highlighted. Herein, particular emphasis is mainly placed on the most widely used nanomaterials in the delivery of natural products, including liposomes, micelles, and nanogels. Finally, we present an overview and the challenges of future implementations of nano-based delivery systems of polyphenolic compounds in the cancer therapeutic field.