Generation of egg yolk by birds requires the synthesis and deposition of large amounts of protein and lipid, and is often accompanied by the incorporation of additional physiological mediators. While there has been much work examining the relative quantities of yolk components, as well as potential adaptive patterns of their allocation, we still do not have a full understanding of what controls yolk formation and composition. Once ovarian follicles are recruited into the preovulatory hierarchy, the yolk is deposited in concentric rings, with one ring deposited per day. Previous studies have shown that there is substantial interspecific and intraspecific variation in the number of rings in yolks, and thus the number of days it took those yolks to grow. We hypothesized that the ability to grow follicles to maturity quickly is limited by the availability of materials to make yolk precursors in the female, either in body reserves or in dietary access. To test this, we supplemented the diets of Japanese quail with hard-boiled chicken yolk and examined the influences of treatment and female body condition on follicle growth rates. Contrary to predictions, females with higher body condition indices produced yolks that grew more slowly, and yolks from supplemented birds grew more slowly than controls. These results indicate that females can modulate the rate of yolk incorporation into developing follicles, and that an energy balance that is too high may not be optimal for the fast growth of developing ovarian follicles.