Increased drought severity is expected in the Mediterranean Basin over the twenty-first century, but our understanding of the potential of most forest tree species to cope with it remains uncertain. In this study, (1) we examined the potential effects of long-term selection and the capacity to respond to future changes in selective pressures in three populations of cork oak (Quercus suber L.). For this purpose, we evaluated the response to dry conditions of 45 open-pollinated trees originating from populations in Morocco, Portugal, and Spain. Growth, leaf size, specific leaf area (SLA), carbon isotope discrimination (Δ 13 C), leaf nitrogen content (N mass ), and total chlorophyll content (Chl mass ) were measured in 9-year-old plants. (2) We also investigated the relationships between functional traits and aboveground growth by regression models. Plants presenting larger and more sclerophyllous leaves (low SLA and high leaf thickness) exhibited higher growths, with results suggesting that these traits are subjected to divergent selection in this species. Heritability estimates were moderately high for Δ 13 C (0.43±0.25-0.83±0.31) and stem diameter (0.40±0.15-0.71±0.28) for the tree populations. For the rest of the traits (except for annual growth), heritability values varied among populations, particularly for height, leaf size, leaf thickness, and N mass . Our results suggest that natural selection has led to local adaptations and has also affected the genetic variance intrapopulation in these cork oak populations, although studies with a higher number of populations should be carried out across different years. Additionally, the absence of significant genetic correlations and the fact that correlated traits did not undergo opposing selection provided little evidence for constraints on evolution caused by genetic correlations.