Powerful and accurate detection of first-generation (F1) hybrids and backcrosses in nature is needed to achieve a better understanding of the function and dynamics of introgression. To document the frequency of ongoing interspecific gene exchange between two Mediterranean evergreen oaks, the cork oak (Quercus suber) and the holm oak (Q. ilex), we analyzed 1487 individuals originating from across the range of the two species using eight microsatellite loci and two Bayesian clustering approaches (implemented in the programs STRUCTURE and NEWHY-BRIDS). Simulated data were used to assess the differences between the two clustering methods and to back up the choice of the threshold value for the posterior probability to discriminate admixed from pure individuals. We found that the use of STRUCTURE resulted in the highest power to detect hybrids, whereas NEWHYBRIDS provided the highest accuracy. Irrespective of the approach, the two species were clearly distinguished as independent genetic entities without any prior information. In contrast with previous reports, we found no evidence for unidirectional introgression. The overall hybridization rate was very low (o2% of introgressed individuals). Only two individuals were identified as F1 hybrids and five as early backcrosses. This work shows that the combined application of the two complementary Bayesian approaches and their systematic validation with simulations, fit for the case at hand, helps gain resolution in the identification of admixed individuals.
Drought is the main selection agent in Mediterranean ecosystems and it has been suggested as an important evolutionary force responsible for population diversification in these types of environments. However, population divergence in quantitative traits can be driven by either natural selection, genetic drift or both. To investigate the roles of these forces on among-population divergence in ecophysiological traits related to drought tolerance (carbon isotope discrimination, specific leaf area, leaf size and leaf nitrogen content), we compared molecular and quantitative genetic differentiation in a common garden experiment including thirteen cork oak (Quercus suber L.) populations across a gradient of rainfall and temperature. Population differentiation for height, specific leaf area, leaf size and nitrogen leaf content measured during a dry year far exceeded the molecular differentiation measured by six nuclear microsatellites. Populations from dry-cool sites showed the lowest nitrogen leaf content and the smallest and thickest leaves contrasting with those from humid-warm sites. These results suggest (i) these traits are subjected to divergence selection and (ii) the genetic differences among populations are partly due to climate adaptation. By contrast, the low among-population divergence found in basal diameter, annual growth and carbon isotopic discrimination (a surrogate for water use efficiency) suggests low or no divergence selection for these traits. Among-population differentiation for neutral markers was not a good predictor for differentiation regarding the quantitative traits studied here, except for leaf size. The correlation observed between the genetic differentiation for leaf size and that for molecular markers was exclusively due to the association between leaf size and the microsatellite QpZAG46, which suggests a possible linkage between QpZAG46 and genes encoding for leaf size.
Aleppo pine (Pinus halepensis Mill.) is a relevant conifer species for studying adaptive responses to drought and fire regimes in the Mediterranean region. In this study, we performed Illumina next-generation sequencing of two phenotypically divergent Aleppo pine accessions with the aims of (i) characterizing the transcriptome through Illumina RNA-Seq on trees phenotypically divergent for adaptive traits linked to fire adaptation and drought, (ii) performing a functional annotation of the assembled transcriptome, (iii) identifying genes with accelerated evolutionary rates, (iv) studying the expression levels of the annotated genes and (v) developing gene-based markers for population genomic and association genetic studies. The assembled transcriptome consisted of 48,629 contigs and covered about 54.6 Mbp. The comparison of Aleppo pine transcripts to Picea sitchensis protein-coding sequences resulted in the detection of 34,014 SNPs across species, with a Ka /Ks average value of 0.216, suggesting that the majority of the assembled genes are under negative selection. Several genes were differentially expressed across the two pine accessions with contrasted phenotypes, including a glutathione-s-transferase, a cellulose synthase and a cobra-like protein. A large number of new markers (3334 amplifiable SSRs and 28,236 SNPs) have been identified which should facilitate future population genomics and association genetics in this species. A 384-SNP Oligo Pool Assay for genotyping with the Illumina VeraCode technology has been designed which showed an high overall SNP conversion rate (76.6%). Our results showed that Illumina next-generation sequencing is a valuable technology to obtain an extensive overview on whole transcriptomes of nonmodel species with large genomes.
Cork oak (Quercus suber L.) and holm oak (Q. ilex L.) are among the most important tree species (economically and ecologically) in the Western Mediterranean region, where they define unique open woods (created and maintained by man) known as 'dehesas' in Spain. However, these formations are under increasing threat due to the lack of regeneration. We have analysed spatial genetic structure in a mixed parkland; inferences about gene dispersal have also been performed, according to the isolation by distance model. Noticeable differences have been detected between the species, despite their similar ecological roles. Restricted effective dispersal leads to kin structures in cork oak, up to 70 m, while no genetic structure is observed in holm oak. Our results suggest a very effective dispersal for the latter, with a local historical gene flow estimated between 55 and 95 m. This is the first time regeneration of Mediterranean oak parklands has been assessed from a genetic perspective. Effective gene flow detected for holm oaks allows us to discount the risk of inbreeding over successive generations. Thus, regeneration of Q. ilex dehesas will just require action directed to help the settlement of the saplings (such as limiting grazing). However, in those cases where densities are too low, more intense forestation (such as plantation and/or establishment of appropriate shelter) will be needed. The 'density threshold' for initiating regeneration will probably be higher for cork oak, due to its more limited dispersal and minor full-light tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.