We explore the potential of optically-pumped magnetometers (OPMs) to infer the laminar origins of neural activity non-invasively. OPM sensors can be positioned closer to the scalp than conventional cryogenic MEG sensors, opening an avenue to higher spatial resolution when combined with high-precision forward modelling. By simulating the forward model projection of single dipole sources onto OPM sensor arrays with varying sensor densities and measurement axes, and employing sparse source reconstruction approaches, we find that laminar inference with OPM arrays is possible at relatively low sensor counts at moderate to high signal-to-noise ratios (SNR). We observe improvements in laminar inference with increasing spatial sampling densities and number of measurement axes. Surprisingly, moving sensors closer to the scalp is less advantageous than anticipated - and even detrimental at high SNRs. Biases towards both the superficial and deep surfaces at very low SNRs and a notable bias towards the deep surface when combining empirical Bayesian beamformer (EBB) source reconstruction with a whole-brain analysis pose further challenges. Adequate SNR through appropriate trial numbers and shielding, as well as precise co-registration, is crucial for reliable laminar inference with OPMs.