Glycerol is the most widely used cryoprotectant for rooster sperm because it declines the mechanical damage to sperm during the freezing process. Despite its high molecular weight and viscosity, which may be cytotoxic, glycerol can cause damage to cells during the cryopreservation process, resulting in less fertility. Poloxamer 188 (
P188
) is an embryo cryopreservation supplement effective in many species and also for cell lines and plant cells. We tested the suitability of P188 in the cryopreservation of rooster sperm, considering post-thawing motility, abnormalities, membrane functionality (hypo-osmotic swelling test), mitochondrial activity, viability, apoptosis status, reactive oxygen species production, and ATP content after thawing and the fertility and hatchability after AI. We carried out a factorial experiment with glycerol concentrations of 2% glycerol (G2) and 8% glycerol (G8) and P188 concentrations of 0% (P0), 0.1% (P0.1), 0.5% (P0.5), and 1% (P1) as fixed effects, with replicate (seven) as a random effect. Interactions between glycerol and P188 were found, with G2P1 yielding higher quality and fertility. G8P0.5 yielded better in most parameters, however, not reaching G2P1. G2P1 showed significantly higher results for total and progressive motility, kinetic parameters (average path velocity, straight-line velocity, and linearity), membrane functionality, viability, mitochondrial activity, and ATP content and lower apoptosis, dead sperm, and reactive oxygen species production. G2P1 resulted in the highest percentages of fertilized and hatched eggs, with no effects in the hatched eggs ratio. Interestingly, G2 was less efficient in many parameters than G8 when combined with P0 and P0.1, being equivalent to G8 with P0.5 and superior to any G8 treatment as G2P1. In conclusion, P188 could improve rooster semen cryopreservation and allow reduction of glycerol in extenders, with a consequent impact in the poultry industry.