Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cause of cancer mortality in the world. To improve the quality of diagnostics and patients’ treatment, new and effective biomarkers are needed. Recent studies have shown that the expression level of different types of long non-coding RNAs (lncRNAs) is dysregulated in HNSCC and correlates with many biological processes. In this study, the response of lncRNAs in HNSCC cell lines after exposure to irradiation and cytotoxic drugs was examined. The SCC-040, SCC-25, FaDu, and Cal27 cell lines were treated with different radiation doses as well as exposed to cisplatin and doxorubicin. The expression changes of lncRNAs after exposure to these agents were checked by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Target prediction was performed using available online tools and classified into specific biological processes and cellular pathways. The results indicated that the irradiation, as well as chemoexposure, causes changes in lncRNA expression and the effect depends on the cell line, type of agents as well as their dose. After irradiation using the dose of 5 Gy significant dysregulation of 4 lncRNAs, 10 Gy-5 lncRNAs, and 20 Gy-3 lncRNAs, respectively, were observed in all cell lines. Only lncRNAs Zfhx2as was down-regulated in all cell lines independently of the dose used. After cisplatin exposure, 14 lncRNAs showed lower and only two higher expressions. Doxorubicin resulted in lower expressions of eight and increased four of lncRNAs. Common effects of cytotoxic drugs were observed in the case of antiPEG11, BACE1AS, PCGEM1, and ST7OT. Analysis of the predicted targets for dysregulated lncRNAs indicated that they are involved in important biological processes, regulating cellular pathways connected with direct response to irradiation or chemoexposure, cellular phenotype, cancer initiating cells, and angiogenesis. Both irradiation and chemoexposure caused specific changes in lncRNAs expression. However, the common effect is potentially important for cellular response to the stress and survival. Further study will show if lncRNAs are useful tools in patients’ treatment monitoring.