The role of endogenous inducers of inflammation is poorly understood. To produce the proinflammatory master cytokine interleukin (IL)-1, macrophages need double stimulation with ligands to both Toll-like receptors (TLRs) for IL-1 gene transcription and nucleotide-binding oligomerization domain-like receptors for activation of the inflammasome. It is particularly intriguing to define how this complex regulation is mediated in the absence of an infectious trigger. Biglycan, a ubiquitous leucine-rich repeat proteoglycan of the extracellular matrix, interacts with TLR2/4 on macrophages. The objective of this study was to define the role of biglycan in the synthesis and activation of IL-1. Here we show that in macrophages, soluble biglycan induces the NLRP3/ASC inflammasome, activating caspase-1 and releasing mature IL-1 without the need for additional costimulatory factors. This is brought about by the interaction of biglycan with TLR2/4 and purinergic P2X 4 /P2X 7 receptors, which induces receptor cooperativity. Furthermore, reactive oxygen species formation is involved in biglycan-mediated activation of the inflammasome. By signaling through TLR2/4, biglycan stimulates the expression of NLRP3 and pro-IL-1 mRNA. Both in a model of non-infectious inflammatory renal injury (unilateral ureteral obstruction) and in lipopolysaccharide-induced sepsis, biglycan-deficient mice displayed lower levels of active caspase-1 and mature IL-1 in the kidney, lung, and circulation. Our results provide evidence for direct activation of the NLRP3 inflammasome by biglycan and describe a fundamental paradigm of how tissue stress or injury is monitored by innate immune receptors detecting the release of the extracellular matrix components and turning such a signal into a robust inflammatory response.
IL-12 is a proinflammatory master cytokine produced by macrophages in response to inflammatory stimuli, such as LPS. The activity of IL-1 is regulated sequentially by synthesis of the 31-kDa precursor pro-IL-1, intracellular proteolytic conversion into active IL-1 (17 kDa) by the cysteine protease caspase-1, also known as IL-1-converting enzyme (1, 2), and by secretion of IL-1 (3). The synthesis of pro-IL-1 is initiated by Toll-like receptor (TLR) agonists, whereas ATP stimulates cleavage and maturation of IL-1 (4, 5). Activation of caspase-1 requires the assembly and activity of a cytosolic multiprotein complex known as the inflammasome, consisting of nucleotide-binding oligomerization-like receptor family members (NLRs; NLRPs (NLR family, pyrin domain-containing 3), NAIP (NLR family, apoptosis inhibitory protein), and NLRC4 (NLR family caspase recruitment domain-containing 4)) (6), generating functional caspase-1 p20 and p10 subunits (1,7,8). TLRs and NLRs contain leucine-rich repeats (LRRs), which are used as ligand-sensing motifs (9, 10). NLRP3, the best characterized member of NLRs, recruits caspase-1 to the inflammasome via the adapter molecule ASC (apoptosis-associated specklike protein containing caspase activation and r...