We provide a systematic approach to describing the Ramond-Ramond (RR) fields as elements in twisted differential K-theory. This builds on a series of constructions by the authors on geometric and computational aspects of twisted differential K-theory, which to a large extent were originally motivated by this problem. In addition to providing a new conceptual framework and a mathematically solid setting, this allows us to uncover interesting and novel effects. Explicitly, we use our recently constructed Atiyah-Hirzebruch spectral sequence (AHSS) for twisted differential K-theory to characterize the RR fields and their quantization, which involves interesting interplay between geometric and topological data. We illustrate this with the examples of spheres, tori, and Calabi-Yau threefolds.