We show that every sheaf on the site of smooth manifolds with values in a stable (∞, 1)-category (like spectra or chain complexes) gives rise to a "differential cohomology diagram" and a homotopy formula, which are common features of all classical examples of differential cohomology theories. These structures are naturally derived from a canonical decomposition of a sheaf into a homotopy invariant part and a piece which has a trivial evaluation on a point. In the classical examples the latter is the contribution of differential forms. This decomposition suggest a natural scheme to analyse new sheaves by determining these pieces and the gluing data. We perform this analysis for a variety of classical and not so classical examples. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.