Genetics and environmental factors have important roles in autoimmune diseases but neither has given us sufficient understanding of these mysterious diseases. Therefore, we are now looking closer at epigenetics, an interface between genetics and environmental factors. Epigenetics can be defined as reversible heritable changes to chromatin that can alter gene expression without altering the gene's DNA sequence. Methylation of DNA and histones are primary means of epigenetic control. By adding methyl groups to DNA and histones, it can limit accessibility of the underlying gene thereby altering the amount of gene expression. The methyl group is derived from an essential molecule in the cell, S-adenosylmethionine (SAM). However, a group of small molecules called polyamines also require SAM for their synthesis. Polyamines are essential for many cellular functions and polyamine activity is increased in many autoimmune diseases. Presented here is the "polyamine hypothesis" in which increased polyamine synthesis competes with cellular methylation (epigenetic control) for SAM. It is proposed that increased polyamine activity can cause disruption of cellular methylation, which can lead to abnormal expression of previously sequestered genes and disruption of other methylation-dependent cellular processes.