Conover CA, Harstad SL, Tchkonia T, Kirkland JL. Preferential impact of pregnancy-associated plasma protein-A deficiency on visceral fat in mice on high-fat diet. Am J Physiol Endocrinol Metab 305: E1145-E1153, 2013. First published September 17, 2013 doi:10.1152/ajpendo.00405.2013.-Accumulation of visceral fat, more so than subcutaneous fat, is strongly associated with severe metabolic complications. However, the factors regulating depot-specific adipogenesis are poorly understood. In this study, we show differential expression of pregnancy-associated plasma protein-A (PAPP-A), a secreted regulator of local insulin-like growth factor (IGF) action, in adipose tissue of mice. PAPP-A mRNA expression was fivefold higher in visceral (mesenteric) fat compared with subcutaneous (inguinal, subscapular), perirenal, and brown fat of mice. To investigate the possible role of depot-specific PAPP-A expression in fat accumulation, wild-type (WT) and PAPP-A knockout (KO) mice were fed a high-fat diet (HFD) for up to 20 wk. Adipocyte size increased in subcutaneous and perirenal depots similarly in WT and PAPP-A KO mice. However, fat cell size and in vivo lipid uptake were significantly reduced in mesenteric fat of PAPP-A KO compared with WT mice. After 20 wk on HFD, phosphorylation of AKT, a downstream signaling intermediate of IGF-I and insulin receptor activation, was significantly decreased by 50% in mesenteric compared with subcutaneous fat in WT mice, but was significantly increased threefold in mesenteric compared with subcutaneous fat in PAPP-A KO mice. This appeared to be because of enhanced insulinstimulated signaling in mesenteric fat of PAPP-A KO mice. These data establish fat depot-specific expression of PAPP-A and indicate preferential impact of PAPP-A deficiency on visceral fat in the mouse that is associated with enhanced insulin receptor signaling. Thus, PAPP-A may be a potential target for treatment and/or prevention strategies for visceral obesity and related morbidities.