Hematopoiesis is the cumulative result of intricately regulated signal transduction cascades that are mediated by cytokines and their cognate receptors. Proper culmination of these diverse signaling pathways forms the basis for an orderly generation of di erent cell types and aberrations in these pathways is an underlying cause for diseases such as cancer. Over the past several years, downstream events initiated upon cytokine/ growth factor stimulation have been a major focus of biomedical research. As a result, several key concepts have emerged allowing a better understanding of the complex signaling processes. A group of novel transcription factors, termed signal transducers and activators of transcription (STATs) appear to orchestrate the downstream events propagated by cytokine/growth factor interactions with their cognate receptors. Until recently, the JAK proteins were considered to be the tyrosine kinases, which dictated the levels of phosphorylation and activation of STAT proteins, forming the basis of the JAK-STAT model. However, over the past few years, increasing evidence has accumulated which indicates that at least some of the STAT protein activation may be mediated by members of the Src gene family following cytokine/growth factor stimulation. Studies have demonstrated that the Src-family of tyrosine kinases can phosphorylate and activate certain STAT proteins, in lieu of JAK kinases. In such a scenario, JAK kinases may be more crucial to phosphorylation of the cytokine/growth factor receptors and in the process create docking sites on the receptors for binding of SH2-containing proteins such as STATs, Src-kinases and other signaling intermediates. Tyrosine phosphorylation and activation of STAT proteins can be achieved either by JAKs or Src-kinases depending on the nature of STAT that is being activated. This forms the basis for the JAK-Src-STAT model proposed in this review. The concerted action of JAK kinases, members of the Src-kinase family and STAT proteins, leads to cell proliferation and cell survival, the end-point of the cytokine/growth factor stimulus.