Studies using both transgenic mice and transfected mammary epithelial cells have established that composite response elements containing multiple binding sites for several transcription factors mediate the hormonal and developmental regulation of milk protein gene expression. Activation of signal transduction pathways by lactogenic hormones and cell-substratum interactions activate transcription factors and change chromatin structure and milk protein gene expression. The casein promoters have binding sites for signal transducers and activators of transcription 5, Yin Yang 1, CCAAT/enhancer binding protein, and the glucocorticoid receptor. The whey protein gene promoters have binding sites for nuclear factor I, as well as the glucocorticoid receptor and the signal transducers and activators of transcription 5. The functional importance of some of these factors in mammary gland development and milk protein gene expression has been elucidated by studying mice in which some of these factors have been deleted.
ErbB2 overexpression in breast tumors results in increased metastasis and angiogenesis and reduced survival. To study ErbB2 signaling mechanisms in metastasis and angiogenesis, we did a spontaneous metastasis assay using MDA-MB-435 human breast cancer cells stably transfected with constitutively active ErbB2 kinase (V659E), a kinase-dead mutant of ErbB2 (K753M), or vector control (neo). Mice injected with V659E had increased metastasis incidence and tumor microvessel density than mice injected with K753M or control.
Purpose: We have previously shown that PTEN loss confers trastuzumab resistance in ErbB2-overexpressing breast cancer using cell culture, xenograft models, and patient samples. This is a critical clinical problem because trastuzumab is used in a variety of therapeutic regimens, and at the current time, there are no established clinical strategies to overcome trastuzumab resistance. Here, we did preclinical studies on the efficacy of clinically applicable inhibitors of the Akt/ mammalian target of rapamycin (mTOR) pathway to restore trastuzumab sensitivity to PTENdeficient cells. Experimental Design: Cell culture and xenograft models were used to test a panel of clinically applicable, small-molecule inhibitors of the Akt/mTOR signal transduction pathway, a critical pathway downstream of ErbB2, and identify compounds with the ability to restore trastuzumab sensitivity to PTEN-deficient cells. Results: When trastuzumab was combined with the Akt inhibitor triciribine, breast cancer cell growth was inhibited and apoptosis was induced. In a xenograft model, combination therapy with trastuzumab and triciribine dramatically inhibited tumor growth. The combination of trastuzumab and the mTOR inhibitor RAD001also slowed breast cancer cell growth in vitro and in vivo. Conclusions: Combining trastuzumab with inhibitors of the Akt/mTOR pathway is a clinically applicable strategy and combinations of trastuzumab with triciribine or RAD001 are promising regimens for rescue of trastuzumab resistance caused by PTEN loss.
Recent progress in diagnostic tools allows many breast cancers to be detected at an early preinvasive stage. Thus, a better understanding of the molecular basis of early breast cancer progression is essential. Previously, we discovered that 14-3-3Z is overexpressed in >40% of advanced breast cancers, and this overexpression predicts poor patient survival. Here, we examined at what stage of breast disease 14-3-3Z overexpression occurs, and we found that increased expression of 14-3-3Z begins at atypical ductal hyperplasia, an early stage of breast disease. To determine whether 14-3-3Z overexpression is a decisive early event in breast cancer, we overexpressed 14-3-3Z in MCF10A cells and examined its effect in a three-dimensional culture model. We discovered that 14-3-3Z overexpression severely disrupted the acini architecture resulting in luminal filling. Proper lumen formation is a result of anoikis, apoptosis due to detachment from the basement membrane. We found that 14-3-3Z overexpression conferred resistance to anoikis. Additionally, 14-3-3Z overexpression in MCF10A cells and in mammary epithelial cells (MEC) from 14-3-3Z transgenic mice reduced expression of p53, which is known to mediate anoikis. Mechanistically, 14-3-3Z induced hyperactivation of the phosphoinositide 3-kinase/Akt pathway which led to phosphorylation and translocation of the MDM2 E3 ligase resulting in increased p53 degradation. Ectopic expression of p53 restored luminal apoptosis in 14-3-3Z-overexpressing MCF10A acini in threedimensional cultures. These data suggest that 14-3-3Z overexpression is a critical event in early breast disease, and down-regulation of p53 is one of the mechanisms by which 14-3-3Z alters MEC acini structure and increases the risk of breast cancer. [Cancer Res 2008;68(6):1760-7]
The ubiquitously expressed 14-3-3 proteins regulate many pathways involved in transformation. Previously, we found that 14-3-3ζ overexpression increased Akt phosphorylation in human mammary epithelial cells. Here, we investigated the clinical relevance and molecular mechanism of 14-3-3ζ overexpression-mediated Akt phosphorylation and the potential impact on breast cancer progression. We found that 14-3-3ζ overexpression was significantly (P = 0.005) associated with increased Akt phosphorylation in human breast tumors. Additionally, 14-3-3ζ overexpression combined with strong Akt phosphorylation was significantly (P=0.01) associated with increased cancer recurrence in patients. In contrast, knockdown of 14-3-3ζ expression by siRNA in cancer cell lines and tumor xenografts reduced Akt phosphorylation. Furthermore, 14-3-3ζ enhanced Akt phosphorylation through activation of PI3K. Mechanistically, 14-3-3ζ bound to the p85 regulatory subunit of PI3K and increased PI3K translocation to the cell membrane. A single 14-3-3 binding motif encompassing serine 83 on p85 is largely responsible for 14-3-3ζ-mediated p85 binding and PI3K/Akt activation. Mutation of serine 83 to alanine on p85 inhibited 14-3-3ζ binding to the p85 subunit of PI3K, reduced PI3K membrane localization and activation, impeded anchorage independent growth and enhanced stress induced apoptosis. These findings revealed a novel mechanism by which 14-3-3ζ overexpression activates PI3K, a key node in the mitogenic signaling network known to promote malignancies in many cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.