Summary
BRD4, a bromodomain and extraterminal domain (BET) family member, is an attractive target in multiple pathological settings, particularly cancer. While BRD4 inhibitors have shown some promise in MYC-driven malignancies such as Burkitt’s Lymphoma (BL), we show that BRD4 inhibitors lead to robust BRD4 protein accumulation, which may account for their limited suppression of MYC expression, modest anti-proliferative activity and lack of apoptotic induction. To address these limitations, we designed ARV-825, a heterobifunctional PROTAC (Proteolysis Targeting Chimera) that recruits BRD4 to the E3 ubiquitin ligase cereblon leading to fast, efficient, and prolonged degradation of BRD4 in all BL cell lines tested. Consequently, ARV-825 more effectively suppresses c-MYC levels and downstream signaling than small molecule BRD4 inhibitors resulting in more effective cell proliferation inhibition and apoptosis induction in BL. Our findings provide strong evidence that cereblon-based PROTACs provide a better and more efficient strategy in targeting BRD4 than traditional small molecule inhibitors.
Prostate cancer has the second highest incidence among cancers in men worldwide and is the second leading cause of cancer deaths of men in the United States. Although androgen deprivation can initially lead to remission, the disease often progresses to castration-resistant prostate cancer (CRPC), which is still reliant on androgen receptor (AR) signaling and is associated with a poor prognosis. Some success against CRPC has been achieved by drugs that target AR signaling, but secondary resistance invariably emerges, and new therapies are urgently needed. Recently, inhibitors of bromodomain and extraterminal (BET) family proteins have shown growth-inhibitory activity in preclinical models of CRPC. Here, we demonstrate that ARV-771, a small-molecule pan-BET degrader based on proteolysis-targeting chimera (PROTAC) technology, demonstrates dramatically improved efficacy in cellular models of CRPC as compared with BET inhibition. Unlike BET inhibitors, ARV-771 results in suppression of both AR signaling and AR levels and leads to tumor regression in a CRPC mouse xenograft model. This study is, to our knowledge, the first to demonstrate efficacy with a small-molecule BET degrader in a solid-tumor malignancy and potentially represents an important therapeutic advance in the treatment of CRPC.BET | BRD4 | protein degradation | prostate | PROTAC
Multiple myeloma (MM) is the second most common hematologic malignancy. Despite recent treatment advances, it remains incurable. Here, we report that Pim2 kinase expression is highly elevated in MM cells and demonstrate that it is required for MM cell proliferation. Functional interference of Pim2 activity either by short hairpin RNAs or by a potent and selective small-molecule inhibitor leads to significant inhibition of MM cell proliferation. Pim inhibition results in a significant decrease of mammalian target of rapamycin C1 (mTOR-C1) activity, which is critical for cell proliferation. We identify TSC2, a negative regulator of mTOR-C1, as a novel Pim2 substrate and show that Pim2 directly phosphorylates TSC2 on Ser-1798 and relieves the suppression of TSC2 on mTOR-C1. These findings support Pim2 as a promising therapeutic target for MM and define a novel Pim2-TSC2-mTOR-C1 pathway that drives MM proliferation.
Summary
ErbB2, a metastasis-promoting oncoprotein, is overexpressed in ~25% of invasive/metastatic breast cancers, but in 50–60% of non-invasive ductal carcinomas in situ (DCIS). It has been puzzling how a subset of ErbB2-overexpressing DCIS develops into invasive breast cancer (IBC). We found that co-overexpression of 14-3-3ζ in ErbB2-overexpressing DCIS conferred a higher risk of progression to IBC. ErbB2 and 14-3-3ζ overexpression, respectively, increased cell migration and decreased cell adhesion, two prerequisites of tumor cell invasion. 14-3-3ζ overexpression reduced cell adhesion by activating the TGFβ/Smads pathway that led to ZFHX1B/SIP-1 upregulation, E-cadherin loss, and epithelial-mesenchymal transition (EMT). Importantly, patients whose breast tumors overexpressed both ErbB2 and 14-3-3ζ had higher rates of metastatic recurrence and death than those whose tumors overexpressed only one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.