Fate and reactivity of dissolved organic matter (DOM) is directly linked to its chemical composition. Therefore, molecular characterisation, for example using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), is used for a better understanding of those factors. To study organic compounds in the water column, an efficient extraction method is important. The commonly used extraction method for FT-ICR-MS is solid phase extraction (SPE) using a reversed-phase sorbent (BondElut PPL). But this method, to the best of our knowledge, was not evaluated for its ability to extract organic nitrogen compounds which are important building blocks of life and therefore an important fraction of DOM. In this study, several solid phase sorbents were tested for their ability to extract organic nitrogen compounds from water samples of natural aqueous environments. Different cartridges concerning their retention mechanism and pore size were tested. Three cartridges with different extraction mechanism (reversed phase, cation exchange or a mixture of both) or different pore size were tested. Except for one sorbent type, which heavily contaminated the samples with organic molecules, the tested cartridges leached neither a significant amount of dissolved organic carbon (DOC) nor dissolved organic nitrogen (DON). The sorbents were tested with lake water to be able to investigate their functionality in real conditions. It could be shown, that the molecular composition of the sample should be considered for the choice of the sorbent material. Additionally, it was shown that a mixed-bed sorbent is a valuable complementary SPE sorbent for the molecular characterisation of lacustrine samples using FT-ICR-MS and it might also be useful for a quantitative extraction. Furthermore, it could be shown that HyperSep Retain CX sorbent allows to extract a broader range of organic nitrogen compounds leading to a more comprehensive data set for investigating organic nitrogen compounds in lakes using FT-ICR-MS.