2018
DOI: 10.1109/temc.2018.2797265
|View full text |Cite
|
Sign up to set email alerts
|

Differential Evolutionary Optimization of an Equivalent Dipole Model for Electromagnetic Emission Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
20
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 36 publications
(20 citation statements)
references
References 18 publications
0
20
0
Order By: Relevance
“…Given the aforementioned issues, it is clear that conventional, yet still widespread EM-driven design methods (primarily those relying on parametric studies) are grossly incapable of handling complex design scenarios, particularly those involving multiple objectives. Numerical optimization procedures are much more suitable for this purpose [20]; yet, the vast majority of available algorithms, both conventional (gradient-based methods [21], pattern search [22]), and nature-inspired (evolutionary algorithms [23], differential evolution [24], particle swarm optimizers [25], firefly algorithm [26]) can only process scalar objective functions. For practical convenience, multi-objective tasks are often reformulated into single-objective ones using, e.g., weighted sum method [27] or goal attainment approach [28], as well as objective prioritization by selecting a primary goal and turning the others into constraints [29].…”
Section: Introductionmentioning
confidence: 99%
“…Given the aforementioned issues, it is clear that conventional, yet still widespread EM-driven design methods (primarily those relying on parametric studies) are grossly incapable of handling complex design scenarios, particularly those involving multiple objectives. Numerical optimization procedures are much more suitable for this purpose [20]; yet, the vast majority of available algorithms, both conventional (gradient-based methods [21], pattern search [22]), and nature-inspired (evolutionary algorithms [23], differential evolution [24], particle swarm optimizers [25], firefly algorithm [26]) can only process scalar objective functions. For practical convenience, multi-objective tasks are often reformulated into single-objective ones using, e.g., weighted sum method [27] or goal attainment approach [28], as well as objective prioritization by selecting a primary goal and turning the others into constraints [29].…”
Section: Introductionmentioning
confidence: 99%
“…This can only be realized through rigorous numerical optimization [18]. However, most of widely used algorithms, including conventional methods (e.g., gradient-based [19] or pattern search [20]) or computational-intelligence-based techniques (e.g., evolutionary algorithms [21], particle swarm optimizers [22], or differential evolution [23]) are single-objective routines that can only process scalar cost functions. Controlling several objectives requires either aggregation (e.g., by means of a weighted sum method [24]), or turning most of the objectives (typically, all but one) into constraints and assigning appropriate acceptance levels.…”
Section: Introductionmentioning
confidence: 99%
“…Sources of radiated emission from an integrated circuit (IC) can be modeled by equivalent dipole arrays with near‐field scan data . The source modeling method is very effective for estimating radio frequency interference problems.…”
Section: Introductionmentioning
confidence: 99%
“…Sources of radiated emission from an integrated circuit (IC) can be modeled by equivalent dipole arrays with nearfield scan data. [1][2][3][4] The source modeling method is very effective for estimating radio frequency interference problems. Once the equivalent dipole sources of an actual complicated IC are found, they can be imported into a full-wave simulation tool to estimate the near fields in the presence of additional structures in a real system environment, such as a heatsink, 1 antenna 2,3 shielding box, or dielectric layer.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation