2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence 2013
DOI: 10.1109/brics-cci-cbic.2013.68
|View full text |Cite
|
Sign up to set email alerts
|

Differential Evolutionary Particle Swarm Optimization (DEEPSO): A Successful Hybrid

Abstract: This paper explores, with numerical case studies, the performance of an optimization algorithm that is a variant of EPSO, the Evolutionary Particle Swarm Optimization method. EPSO is already a hybrid approach that may be seen as a PSO with self-adaptive weights or an Evolutionary Programming approach with a self-adaptive recombination operator. The new hybrid DEEPSO retains the self-adaptive properties of EPSO but borrows the concept of rough gradient from Differential Evolution algorithms. The performance of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
58
0
9

Year Published

2016
2016
2020
2020

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 76 publications
(69 citation statements)
references
References 22 publications
2
58
0
9
Order By: Relevance
“…Para la restricción de pérdidas y demanda se usaron diferentes coeficientes de pérdidas analizados en [6], [7], [8], [9], [10]. Especificamente en [10] se muestran los resultados de cálculo de las pérdidas cuando se usan los coeficientes de kron, los incrementales y los coeficientes obtenidos después de aplicar el algoritmo de optimización heurística DEEPSO (Differential Evolutionary Particle Swarm Optimization) que los calcula para diferentes casos de variación de demanda y de generación [11], [12], [13]. De esta manera, el presente artículo es una continuación del trabajo presentado en [10] extendiendo la formulación a su aplicación en el despacho económico y formulando unas restricciones lineales a partir de las restricciones tradicionales (sección 2).…”
Section: Introductionunclassified
“…Para la restricción de pérdidas y demanda se usaron diferentes coeficientes de pérdidas analizados en [6], [7], [8], [9], [10]. Especificamente en [10] se muestran los resultados de cálculo de las pérdidas cuando se usan los coeficientes de kron, los incrementales y los coeficientes obtenidos después de aplicar el algoritmo de optimización heurística DEEPSO (Differential Evolutionary Particle Swarm Optimization) que los calcula para diferentes casos de variación de demanda y de generación [11], [12], [13]. De esta manera, el presente artículo es una continuación del trabajo presentado en [10] extendiendo la formulación a su aplicación en el despacho económico y formulando unas restricciones lineales a partir de las restricciones tradicionales (sección 2).…”
Section: Introductionunclassified
“…: (9) From Equations (5)- (9), is the new position of the particle, is the new velocity found, is a diagonal binary matrix with a value of 1 when the probability is and 0 when the probability is 1 , * are the mutated weights of inertia, memory, and cooperation of the swarm, given by a learning parameter (fixed or mutated), and 0,1 is a random Gaussian variable with 0 mean and variance 1. Also, * is the global position provided by the new weight , which is collected from a diagonal matrix, having a self-adaptive feature, and in this sense, it is a mutated element [48,49]. Components X and X guarantee that a suitable extraction really happens, considering macrogradient points in a descending direction depending on the structured comparison of and .…”
Section: Differential Evolutionary Particle Swarm Optimizationmentioning
confidence: 99%
“…Also, b * g is the global position provided by the new weight w g , which is collected from a diagonal matrix, having a self-adaptive feature, and in this sense, it is a mutated element [48,49]. Components X i r1 and X i r2 guarantee that a suitable extraction really happens, considering macro-gradient points in a descending direction depending on the structured comparison of f X i r1 and f X i r2 .…”
Section: Differential Evolutionary Particle Swarm Optimizationmentioning
confidence: 99%
See 2 more Smart Citations