Rickett’s big-footed bat, Myotis pilosus, which belongs to the family Vespertilionida, is the only known piscivorous bat in East Asia. Accurate whole genome and transcriptome annotations are essential for the study of bat biological evolution. The lack of a whole genome for M. pilosus has limited our understanding of the molecular mechanisms underlying the species’ evolution, echolocation, and immune response. In the present work, we sequenced the entire transcriptome using error-corrected PacBio single-molecule real-time (SMRT) data. Then, a total of 40 GB of subreads were generated, including 29,991 full-length non-chimeric (FLNC) sequences. After correction by Illumina short reads and de-redundancy, we obtained 26,717 error-corrected isoforms with an average length of 3018.91 bp and an N50 length of 3447 bp. A total of 1528 alternative splicing (AS) events were detected by transcriptome structural analysis. Furthermore, 1032 putative transcription factors (TFs) were identified, with additional identification of several long non-coding RNAs (lncRNAs) with high confidence. Moreover, several key genes, including PRL-2, DPP4, Glul, and ND1 were also identified as being associated with metabolism, immunity, nervous system processes, and auditory perception. A multitude of pattern recognition receptors was identified, including NLR, RLR, SRCR, the antiviral molecule IRF3, and the IFN receptor subunit IFNAR1. High-quality reference genomes at the transcriptome level may be used to quantify gene or transcript expression, evaluate alternative splicing levels, identify novel transcripts, and enhance genome annotation in bats.