Aberrant protein tyrosine phosphorylation resulting from the altered activity of protein tyrosine phosphatases (PTPs) is increasingly being implicated in the genesis and progression of human cancer. Accumulating evidence indicates that the dysregulated expression of members of the phosphatase of regenerating liver (PRL) subgroup of PTPs is linked to these processes. Enhanced expression of the PRLs, notably PRL-1 and PRL-3, promotes the acquisition of cellular properties that confer tumorigenic and metastatic abilities. Up-regulation of PRL-3 is associated with the progression and eventual metastasis of several types of human cancer. Indeed, PRL-3 shows promise as a biomarker and prognostic indicator in colorectal, breast, and gastric cancers. However, the substrates and molecular mechanisms of action of the PRLs have remained elusive. Recent findings indicate that PRLs may function in regulating cell adhesion structures to effect epithelial-mesenchymal transition. The identification of PRL substrates is key to understanding their roles in cancer progression and exploiting their potential as exciting new therapeutic targets for cancer treatment.
Frizzled/planar cell polarity (PCP) signaling regulates cell motility in several tissues, including ommatidial rotation in Drosophila melanogaster. The Nemo kinase has also been linked to cell motility regulation and ommatidial rotation. The mechanistic role(s) of Nemo during rotation remain however obscure. We demonstrate that nemo functions throughout the entire rotation movement promoting rate of rotation. Genetic and molecular studies indicate that Nemo binds both the core PCP factor complex of Strabismus–Prickle, and the E-cadherin–β-catenin (Armadillo) complex, which colocalize and like Nemo also promote rotation. Strabismus/Vang binds and stabilizes Nemo asymmetrically within the ommatidial precluster. Nemo and β-catenin then act synergistically promoting rotation, which is mediated in vivo through Nemo phosphorylation of β-catenin. Our data suggest that Nemo serves as a conserved molecular link between core PCP factors and E-cad/β-catenin complexes, promoting ommatidial rotation and cell motility in general.
The molecular and cellular events involved in cancer progression and metastasis remain much less well-defined than those involved in oncogenesis, despite the fact that cell metastasis is the major factor in cancer mortality. Thus, the discovery that the expression of a protein tyrosine phosphatase, protein of regenerating liver-3 (PRL-3), is upregulated in colon cancer metastases provided an exciting indication that the altered regulation of specific protein tyrosine phosphorylation events and signaling pathways might characterize these metastatic cells and/or be key in promoting the tumor-to-metastasis transition in this, and perhaps other, cancers of epithelial origin. However, the cellular substrate(s) of PRL-3 has not been identified, and little is known of PRL-3-mediated cellular signaling pathways. This review illustrates the significance of PRL-3 in promoting metastasis and the importance of determining the endogenous role of PRL-3.
The oxytocinase subfamily of M1 aminopeptidases plays an important role in processing and trimming of peptides for presentation on major histocompatibility (MHC) Class I molecules. Several large-scale genomic studies have identified association of members of this family of enzymes, most notably ERAP1 and ERAP2, with immune-mediated diseases including ankylosing spondylitis, psoriasis and birdshot chorioretinopathy. Much is now known about the genetics of these enzymes and how genetic variants alter their function, but how these variants contribute to disease remains largely unresolved. Here we discuss what is known about their structure and function and highlight some of the knowledge gaps that affect development of drugs targeting these enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.