Phospholipases A2 (PLA2s) were purified from the Trimeresurus stejnegeri venom obtained from various localities in Taiwan and three provinces in China, by gel filtration followed by reversed-phase HPLC. The precise molecular mass and N-terminal sequence of each PLA2 were determined. In addition to the six previously documented PLA2 isoforms of this species, we identified ten novel isoforms. The venom gland cDNAs of individual specimens of the viper from four localities were used for PCR and subsequent cloning of the PLA2s. The molecular masses and partial sequences of most of the purified PLA2s matched with those deduced from a total of 13 distinct cDNA sequences of these clones. Besides the commonly known Asp49 or Lys-49 PLA2s of crotalid venoms, a novel type of PLA2 with Asn-49 substitution at the Ca2+-binding site was discovered. This type of PLA2 is non-catalytic, but may cause local oedema and appears to be a venom marker of many tree vipers. In particular, we showed that T. stejnegeri displayed high geographic variations of the PLA2s within and between their Taiwanese and Chinese populations, which can be explained by geological isolation and prey ecology. A phylogenetic tree of the acidic venom PLA2s of this species and other related Asian vipers reveals that T. stejnegeri contains venom genes related to those from several sympatric pit vipers, including the genera Tropedolaemus and Gloydius besides the Trimeresurus itself. Taken together, these findings may explain the exceptionally high variations in the venom as well as the evolutionary advantage of this species.