Denitrifying bacteria degrade many different aromatic compounds anaerobically via the well-described benzoyl-CoA pathway. We have shown recently that the denitrifiers Azoarcus anaerobius and Thauera aromatica strain AR-1 use a different pathway for anaerobic degradation of resorcinol (1,3-dihydroxybenzene) and 3,5-dihydroxybenzoate, respectively. Both substrates are converted to hydroxyhydroquinone (1,2,4-trihydroxybenzene).In the membrane fraction of T. aromatica strain AR-1 cells grown with 3,5-dihydroxybenzoate, a hydroxyhydroquinone-dehydrogenating activity of 74 nmol min -1 (mg protein) -1 was found. This activity was significantly lower in benzoate-grown cells. Benzoate-grown cells were not induced for degradation of 3,5-dihydroxybenzoate, and cells grown with 3,5-dihydroxybenzoate degraded benzoate only at a very low rate. With a substrate mixture of benzoate plus 3,5-dihydroxybenzoate, the cells showed diauxic growth. Benzoate was degraded first, while complete degradation of 3,5-dihydroxybenzoate occurred only after a long lag phase. The 3,5-dihydroxybenzoate-oxidizing and the hydroxyhydroquinone-dehydrogenating activities were fully induced only during 3,5-dihydroxybenzoate degradation. Synthesis of benzoyl-CoA reductase appeared to be significantly lower in 3,5-dihydroxybenzoate-grown cells as shown by immunoblotting. These results confirm that T. aromatica strain AR-1 harbors, in addition to the benzoyl-CoA pathway, a second, mechanistically distinct pathway for anaerobic degradation of aromatic compounds. This pathway is inducible and subject to catabolite repression by benzoate.