Many aromatic compounds are anaerobically oxidized to CO 2 via benzoyl-CoA as the common aromatic intermediate. In Thauera aromatica, the central benzoyl-CoA pathway comprises the ATP-driven two-electron reduction of the benzene ring; this reaction uses a ferredoxin as electron donor and is catalyzed by benzoyl-CoA reductase. The first intermediate, cyclohex-1,5-diene-1-carboxyl-CoA, is subsequently hydrated by dienoyl-CoA hydratase to 6-hydroxycyclohex-1-ene-1-carboxyl-CoA. Formation of the main product produced by cell extracts, 3-hydroxypimelyl-CoA, requires at least two further steps; the oxidation of a hydroxyl group and the hydrolytic carbon ring cleavage of a CoA-activated β-oxoacid. In addition, enoyl-CoA hydratase may come into play. A cluster of eight adjacent genes, which are transcribed in the same direction and may form an operon, was found in this bacterium. The cluster codes for proven and postulated enzymes of the benzoyl-CoA pathway. The genes for the enzymes code for ferredoxin, four subunits of benzoyl-CoA reductase, dienoyl-CoA hydratase, 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase (NAD ϩ ), and the ring hydrolyzing enzyme. The deduced amino acid sequences of these proteins were 35Ϫ86% similar to the corresponding sequences found in Rhodopseudomonas palustris. Benzoyl-CoA reductase subunits exhibit distinct similarities with 2-hydroxyglutarylCoA dehydratase and its ATP-hydrolysing activase protein of Acidaminococcus fermentans as well as with open reading frames of unknown function in other bacteria. Conversion of benzoyl-CoA to 3-hydroxypimelyl-CoA can be explained by a minimal model of the benzoyl-CoA pathway assuming the four enzymes whose genes were characterized and an additional enoyl-CoA hydratase. In R. palustris the dienoyl-CoA hydratase gene is lacking suggesting the operation of a modified benzoyl-CoA pathway with cyclohex-1-ene-1-carboxyl-CoA as intermediate.Keywords : benzoyl-CoA pathway ; benzoyl-CoA reductase; dienoyl-CoA hydratase; 3-hydroxypimelylCoA; 2-hydroxyglutaryl-CoA dehydratase.Aerobic aromatic metabolism is well known for the extensive use of molecular oxygen. Monooxygenases and dioxygenases are essential for the hydroxylation and for the cleavage of aromatic ring structures. Anaerobic aromatic metabolism necessarily requires a quite different strategy. Essential is the replacement of oxygen-dependent steps by a set of alternative reactions and the formation of different central intermediates, i.e. a completely different solution to overcome the energy barrier of the aromatic ring systems. Notably, in anaerobic pathways, the aro-
Differential induction of enzymes involved in anaerobic metabolism of aromatic substrates was studied in the denitrifying bacterium Thauera aromatica. This metabolism is divided into (1) peripheral reactions transforming the aromatic growth substrates to the common intermediate benzoyl-CoA, (2) the central benzoyl-CoA pathway comprising ring-reduction of benzoyl-CoA and subsequent beta-oxidation to 3-hydroxypimelyl-CoA, and (3) the pathway of beta-oxidation of 3-hydroxypimelyl-CoA to three acetyl-CoA and CO2. Regulation was studied by three methods. 1. Determination of protein patterns of cells grown on different substrates. This revealed several strongly substrate-induced polypeptides that were missing in cells grown on benzoate or other intermediates of the respective metabolic pathways. 2. Measurement of activities of known enzymes involved in this metabolism in cells grown on different substrates. The enzyme pattern found is consistent with the regulatory pattern deduced from simultaneous adaptation of cells to utilisation of other aromatic substrates. 3. Immunological detection of catabolic enzymes in cells grown on different substrates. Benzoate-CoA ligase and 4-hydroxybenzoate-CoA ligase were detected only in cells yielding the respective enzyme activity. However, presence of the subunits of benzoyl-CoA reductase and 4-hydroxybenzoyl-CoA reductase was also recorded in some cell batches lacking enzyme activity. This possibly indicates an additional level of regulation on protein level for these two reductases.
The anaerobic metabolism of 3-hydroxybenzoate was studied in the denitrifying bacterium Thauera aromatica. Cells grown with this substrate were adapted to grow with benzoate but not with 4-hydroxybenzoate. Vice versa, 4-hydroxybenzoate-grown cells did not utilize 3-hydroxybenzoate. The first step in 3-hydroxybenzoate metabolism is a coenzyme A (CoA) thioester formation, which is catalyzed by an inducible 3-hydroxybenzoate-CoA ligase. The enzyme was purified and characterized. Further metabolism of 3-hydroxybenzoylCoA by cell extract required MgATP and was coupled to the oxidation of 2 mol of reduced viologen dyes per mol of substrate added. Purification of the 3-hydroxybenzoyl-CoA reducing enzyme revealed that this activity was due to benzoyl-CoA reductase, which reduced the 3-hydroxy analogue almost as efficiently as benzoyl-CoA. The further metabolism of the alicyclic dienoyl-CoA product containing the hydroxyl substitution obviously required additional specific enzymes. Comparison of the protein pattern of 3-hydroxybenzoate-grown cells with benzoate-grown cells revealed several 3-hydroxybenzoate-induced proteins; the N-terminal amino acid sequences of four induced proteins were determined and the corresponding genes were identified and sequenced. A cluster of six adjacent genes contained the genes for substrate-induced proteins 1 to 3; this cluster may not yet be complete. Protein 1 is a short-chain alcohol dehydrogenase. Protein 2 is a member of enoyl-CoA hydratase enzymes. Protein 3 was identified as 3-hydroxybenzoate-CoA ligase. Protein 4 is another member of the enoyl-CoA hydratases. In addition, three genes coding for enzymes of -oxidation were present. The anaerobic 3-hydroxybenzoate metabolism here obviously combines an enzyme (benzoyl-CoA reductase) and electron carrier (ferredoxin) of the general benzoyl-CoA pathway with enzymes specific for the 3-hydroxybenzoate pathway. This raises some questions concerning the regulation of both pathways.Phenolic compounds comprise a large and diverse group of organic, water-soluble compounds that can serve as growth substrates for microorganisms. In recent years, it has been established that bacteria can make use of these compounds as carbon and energy source both aerobically and under anoxic conditions. Aerobic metabolism of phenolic compounds requires molecular oxygen and oxygenases for the cleavage of the aromatic ring (for a recent review, see reference 19). Anaerobic metabolism differs in several aspects; most importantly, it is by definition an oxygen-independent process. Phenolic compounds such as phenol or o-cresol are converted to the corresponding hydroxybenzoic acids 4-hydroxybenzoate and 3-methyl-4-hydroxybenzoate by para carboxylation (reviewed in references 18, 21, and 36). Hydroxybenzoic acids are also formed from other aromatic compounds by bacteria; e.g., p-cresol is oxidized to 4-hydroxybenzoate, and m-cresol is oxidized to 3-hydroxybenzoate (7, 33).It appears that there are at least four ways to metabolize hydroxybenzoic acids further under an...
Roseobacter denitrificans (Erythrobacter species strain OCh114) synthesizes bacteriochlorophyll a (BChl) and the photosynthetic apparatus only in the presence of oxygen and is unable to carry out primary photosynthetic reactions and to grow photosynthetically under anoxic conditions. The puf operon of R. denitrificans has the same five genes in the same order as in many photosynthetic bacteria, i.e., pufBALMC. PufC, the tetraheme subunit of the reaction center (RC), consists of 352 amino acids (M r , 39,043); 20 and 34% of the total amino acids are identical to those of PufC of Chloroflexus aurantiacus and Rubrivivax gelatinosus, respectively. The N-terminal hydrophobic domain is probably responsible for anchoring the subunit in the membrane. Four heme-binding domains are homologous to those of PufC in several purple bacteria. Sequences similar to pufQ and pufX of Rhodobacter capsulatus were not detected on the chromosome of R. denitrificans. The puf operon of R. denitrificans was expressed in trans in Escherichia coli, and all gene products were synthesized. The Roseobacter puf operon was also expressed in R. capsulatus CK11, a puf puc double-deletion mutant. For the first time, an RC/light-harvesting complex I core complex was heterologously synthesized. The strongest expression of the R. denitrificans puf operon was observed under the control of the R. capsulatus puf promoter, in the presence of pufQ and pufX and in the absence of pufC. Charge recombination between the primary donor P ؉ and the primary ubiquinone Q A ؊ was observed in the transconjugant, showing that the M and L subunits of the RC were correctly assembled. The transconjugants did not grow photosynthetically under anoxic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.