Two electron spin resonance (ESR) spin labels were used to monitor the physical state of bacterial and animal cell membranes: 5N10, a nitroxide derivative of decane, and 12NS-GA, a glucosamine derivative of 12-nitroxide stearic acid. Spectra were recorded at 1 degrees C intervals from approximately 5 to 45 degrees C. Arrhenius plots of log hH/hP vs. 1/K were obtained by measuring the amplitudes of the hydrocarbon and water signals, hH and hP, respectively. Two discontinuities in the Arrhenius plot (at characteristic temperatures t1 and th) were observed with bacterial cell membranes independent of the spin label employed. Analysis of sealed animal cell membrane samples revealed four characteristic temperatures when the hydrophobic spin lable 5N10 was used, but only two when the amphiphilic spin label 12NS-GA was used. The specific set of characteristic temperatures revealed with 12NS-GA depended on whether the membrane preparation was inside out (ISO) or right side out (RSO). Analysis of Newcastle disease virus, a source of RSO plasma membrane derived from host, revealed two characteristic temperatures at approximately 14 and 33 degrees C. Analysis of phagosomes, a source of ISO plasma membrane derived from LM cells, revealed two characteristic temperatures at approximately 23 and 38 degrees C. When unsealed or disrupted membrane preparations were spin labeled with 12NS-GA, both sets (RSO and ISO) of characteristic temperatures were revealed. The results indicate that the inner and outer monolayers of animal cell membranes are physically distinct and that the glycosylated spin label, 12NS-GA, is apparently restricted in its ability to flip across the membrane bilayer. In this study, characteristic temperatures were pinpointed by computer analysis of the ESR spectral data.