Aims/hypothesis Bi-allelic loss-of-function mutations in the INSR gene (encoding the insulin receptor [INSR]) commonly cause extreme insulin resistance and early mortality. Therapeutic options are limited, but anti-INSR antibodies have been shown to activate two mutant receptors, S323L and F382V. This study evaluates four well-characterised murine anti-INSR monoclonal antibodies recognising distinct epitopes (83-7, 83-14, 18-44, 18-146) as surrogate agonists for potential targeted treatment of severe insulin resistance arising from insulin receptoropathies. Methods Ten naturally occurring mutant human INSRs with defects affecting different aspects of receptor function were modelled and assessed for response to insulin and anti-INSR antibodies. A novel 3T3-L1 adipocyte model of insulin receptoropathy was generated, permitting conditional knockdown of endogenous mouse Insr by lentiviral expression of species-specific short hairpin (sh)RNAs with simultaneous expression of human mutant INSR transgenes. Results All expressed mutant INSR bound to all antibodies tested. Eight mutants showed antibody-induced autophosphorylation, while co-treatment with antibody and insulin increased maximal phosphorylation compared with insulin alone. After knockdown of mouse Insr and expression of mutant INSR in 3T3-L1 adipocytes, two antibodies (83-7 and 83-14) activated signalling via protein kinase B (Akt) preferentially over signalling via extracellular signalregulated kinase 1/2 (ERK1/2) for seven mutants. These antibodies stimulated glucose uptake via P193L, S323L, F382V and D707A mutant INSRs, with antibody response greater than insulin response for D707A. Conclusions/interpretation Anti-INSR monoclonal antibodies can activate selected naturally occurring mutant human insulin receptors, bringing closer the prospect of novel therapy for severe insulin resistance caused by recessive mutations.