Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Data collection using local differential privacy (LDP) has mainly been studied for homogeneous data. Several data categories, including key-value pairs, must be estimated simultaneously in real-world applications, including the frequency of keys and the mean values within each key. It is challenging to achieve an acceptable utility-privacy tradeoff using LDP for key-value data collection since the data has two aspects, and a client could have multiple key-value pairs. Current LDP approaches are not scalable enough to handle large and small datasets. When the dataset is small, there is insufficient data to calculate statistical parameters; when the dataset is enormous, such as in streaming data, there is a risk of data leakage due to the high availability of too much information. The result is unsuitable for examination due to the substantial amount of randomization used in some methods. Existing LDP approaches are mostly restricted to basic data categories like category and numerical values. To address these difficulties, this research developed the DKVALP (Differentially private key-value pairs) algorithm, which ensures differential privacy in key-value pair data. This DKVALP is a lightweight, differentially private data algorithm that generates random noise using an updated Laplace algorithm to ensure differential privacy for the data. According to execution outputs on synthetic and real-world datasets, the proposed DKVALP framework offers improved usefulness for both frequency and mean predictions over the similar LDP security as conventional approaches.
Data collection using local differential privacy (LDP) has mainly been studied for homogeneous data. Several data categories, including key-value pairs, must be estimated simultaneously in real-world applications, including the frequency of keys and the mean values within each key. It is challenging to achieve an acceptable utility-privacy tradeoff using LDP for key-value data collection since the data has two aspects, and a client could have multiple key-value pairs. Current LDP approaches are not scalable enough to handle large and small datasets. When the dataset is small, there is insufficient data to calculate statistical parameters; when the dataset is enormous, such as in streaming data, there is a risk of data leakage due to the high availability of too much information. The result is unsuitable for examination due to the substantial amount of randomization used in some methods. Existing LDP approaches are mostly restricted to basic data categories like category and numerical values. To address these difficulties, this research developed the DKVALP (Differentially private key-value pairs) algorithm, which ensures differential privacy in key-value pair data. This DKVALP is a lightweight, differentially private data algorithm that generates random noise using an updated Laplace algorithm to ensure differential privacy for the data. According to execution outputs on synthetic and real-world datasets, the proposed DKVALP framework offers improved usefulness for both frequency and mean predictions over the similar LDP security as conventional approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.