Abstract:Currently, private data leakage and nonlinear classification are two challenges encountered in big data mining. In particular, few studies focus on these issues in support vector machines (SVMs). In this paper, to effectively solve them, we propose a novel framework based on the concepts of differential privacy (DP) and kernel functions. This framework can allocate privacy budgets and add artificial noise to different SVM locations simultaneously, which makes the perturbation process freer and more delicate. I… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.