Now, many application services based on location data have brought a lot of convenience to people’s daily life. However, publishing location data may divulge individual sensitive information. Because the location records about location data may be discrete in the database, some existing privacy protection schemes are difficult to protect location data in data mining. In this paper, we propose a travel trajectory data record privacy protection scheme (TMDP) based on differential privacy mechanism, which employs the structure of a trajectory graph model on location database and frequent subgraph mining based on weighted graph. Time series is introduced into the location data; the weighted trajectory model is designed to obtain the travel trajectory graph database. We upgrade the mining of location data to the mining of frequent trajectory graphs, which can discover the relationship of location data from the database and protect location data mined. In particular, to improve the identification efficiency of frequent trajectory graphs, we design a weighted trajectory graph support calculation algorithm based on canonical code and subgraph structure. Moreover, to improve the data utility under the premise of protecting user privacy, we propose double processes of adding noises to the subgraph mining process by the Laplace mechanism and selecting final data by the exponential mechanism. Through formal privacy analysis, we prove that our TMDP framework satisfies
ε
-differential privacy. Compared with the other schemes, the experiments show that the data availability of the proposed scheme is higher and the privacy protection of the scheme is effective.
Currently, private data leakage and nonlinear classification are two challenges encountered in big data mining. In particular, few studies focus on these issues in support vector machines (SVMs). In this paper, to effectively solve them, we propose a novel framework based on the concepts of differential privacy (DP) and kernel functions. This framework can allocate privacy budgets and add artificial noise to different SVM locations simultaneously, which makes the perturbation process freer and more delicate. In addition, under this framework, we propose three algorithms, DP SVMs that perturb the training data set, perturb the kernel function, and utilize mixed perturbation (DPSVM-TDP, DPSVM-KFP, and DPSVM-MP, respectively), all of which can realize accurate classification while ensuring that the users’ privacy is not violated. Moreover, we conduct privacy analysis on these algorithms and prove that they all satisfy
ε
,
0
−
DP. Finally, we conduct experiments to evaluate the algorithms in terms of different aspects and compare them with the DPSVM with dual-variable perturbation (DVP) algorithm (DPSVM-DVP) to determine the optimal perturbation method. The results show that DPSVM-KFP can achieve the highest data utility and strictest privacy protection with the shortest running time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.