SUMMARYWe investigated the effects of acute heat stress and cold stress on cell viability, lysosome membrane stability, double-and singlestranded DNA breakage, and signaling mechanisms involved in cellular homeostasis and apoptosis in hemocytes of native and invasive mussels, Mytilus californianus and Mytilus galloprovincialis, respectively. Both heat stress (28, 32°C) and cold stress (2, 6°C) led to significant double-and single-stranded breaks in DNA. The type and extent of DNA damage were temperature and time dependent, as was caspase-3 activation, an indicator of apoptosis, which may occur in response to DNA damage. Hemocyte viability and lysosomal membrane stability decreased significantly under heat stress. Western blot analyses of hemocyte extracts with antibodies for proteins associated with cell signaling and stress responses [including members of the phospho-specific mitogen-activated protein kinase (MAPK) family c-JUN NH 2 -terminal kinase (JNK) and p38-MAPK, and apoptosis executor caspase-3] revealed that heat and cold stress induced a time-dependent activation of JNK, p38-MAPK and caspase-3 and that these signaling and stress responses differed between species. The thermal limits for activation of cell signaling processes linked to the repair of stress-induced damage may help determine cellular thermal tolerance limits. Our results show similarities in responses to cold and heat stress and suggest causal linkages between levels of DNA damage at both extremes of temperature and downstream regulatory responses, including induction of apoptosis. Compared with M. californianus, M. galloprovincialis might have a wider temperature tolerance due to a lower amount of single-and double-stranded DNA damage, faster signaling activation and transduction, and stronger repair ability against temperature stress.