2021
DOI: 10.48550/arxiv.2112.14445
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Differentially-Private Clustering of Easy Instances

Abstract: Clustering is a fundamental problem in data analysis. In differentially private clustering, the goal is to identify k cluster centers without disclosing information on individual data points. Despite significant research progress, the problem had so far resisted practical solutions. In this work we aim at providing simple implementable differentially private clustering algorithms that provide utility when the data is "easy," e.g., when there exists a significant separation between the clusters.We propose a fra… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?