We study the point-to-point shortest path problem in a setting where preprocessing is allowed. We improve the reach-based approach of Gutman [16] in several ways. In particular, we introduce a bidirectional version of the algorithm that uses implicit lower bounds and we add shortcut arcs which reduce vertex reaches. Our modifications greatly reduce both preprocessing and query times. The resulting algorithm is as fast as the best previous method, due to Sanders and Schultes [27]. However, our algorithm is simpler and combines in a natural way with A * search, which yields significantly better query times.
A Bottom-k sketch is a summary of a set of items with nonnegative weights that supports approximate query processing. A sketch is obtained by associating with each item in a ground set an independent random rank drawn from a probability distribution that depends on the weight of the item and including the k items with smallest rank value.Bottom-k sketches are an alternative to k-mins sketches [9], which consist of the k minimum ranked items in k independent rank assignments, and of min-hash [5] sketches, where hash functions replace random rank assignments. Sketches support approximate aggregations, including weight and selectivity of a subpopulation. Coordinated sketches of multiple subsets over the same ground set support subset-relation queries such as Jaccard similarity or the weight of the union. All-distances sketches are applicable for datasets where items lie in some metric space such as data streams (time) or networks. These sketches compactly encode the respective plain sketches of all neighborhoods of a location. These sketches support queries posed over time windows or neighborhoods and time/spatially decaying aggregates.An important advantage of bottom-k sketches, established in a line of recent work, is much tighter estimators for several basic aggregates. To materialize this benefit, we must adapt traditional k-mins applications to use bottom-k sketches. We propose all-distances bottom-k sketches and develop and analyze data structures that incrementally construct bottom-k sketches and alldistances bottom-k sketches.Another advantage of bottom-k sketches is that when the data is represented explicitly, they can be obtained much more efficiently than k-mins sketches. We show that k-mins sketches can be derived from respective bottom-k sketches, which enables the use of bottom-k sketches with off-the-shelf k-mins estimators. (In fact, we obtain tighter estimators since each bottom-k sketch is a distribution over k-mins sketches).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.