We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs. *
Computing driving directions has motivated many shortest path heuristics that answer queries on continental scale networks, with tens of millions of intersections, literally instantly, and with very low storage overhead. In this paper we complement the experimental evidence with the first rigorous proofs of efficiency for many of the heuristics suggested over the past decade. We introduce the notion of highway dimension and show how low highway dimension gives a unified explanation for several seemingly different algorithms. 782
Propagation of contagion through networks is a fundamental process. It is used to model the spread of information, influence, or a viral infection. Diffusion patterns can be specified by a probabilistic model, such as Independent Cascade (IC), or captured by a set of representative traces.Basic computational problems in the study of diffusion are influence queries (determining the potency of a specified seed set of nodes) and Influence Maximization (identifying the most influential seed set of a given size). Answering each influence query involves many edge traversals, and does not scale when there are many queries on very large graphs. The gold standard for Influence Maximization is the greedy algorithm, which iteratively adds to the seed set a node maximizing the marginal gain in influence. Greedy has a guaranteed approximation ratio of at least (1 − 1/e) and actually produces a sequence of nodes, with each prefix having approximation guarantee with respect to the same-size optimum. Since Greedy does not scale well beyond a few million edges, for larger inputs one must currently use either heuristics or alternative algorithms designed for a pre-specified small seed set size.We develop a novel sketch-based design for influence computation. Our greedy Sketch-based Influence Maximization (SKIM) algorithm scales to graphs with billions of edges, with one to two orders of magnitude speedup over the best greedy methods. It still has a guaranteed approximation ratio, and in practice its quality nearly matches that of exact greedy. We also present influence oracles, which use linear-time preprocessing to generate a small sketch for each node, allowing the influence of any seed set to be quickly answered from the sketches of its nodes.
We study the point-to-point shortest path problem in a setting where preprocessing is allowed. We improve the reach-based approach of Gutman [16] in several ways. In particular, we introduce a bidirectional version of the algorithm that uses implicit lower bounds and we add shortcut arcs which reduce vertex reaches. Our modifications greatly reduce both preprocessing and query times. The resulting algorithm is as fast as the best previous method, due to Sanders and Schultes [27]. However, our algorithm is simpler and combines in a natural way with A * search, which yields significantly better query times.
During the eigthies and early nineties, the best exact algorithms for the Capacitated Vehicle Routing Problem (CVRP) utilized lower bounds obtained by Lagrangean relaxation or column generation. Next, the advances in the polyhedral description of the CVRP yielded branch-andcut algorithms giving better results. However, several instances in the range of 50-80 vertices, some proposed more than 30 years ago, can not be solved with current known techniques. This paper presents an algorithm utilizing a lower bound obtained by minimizing over the intersection of the polytopes associated to a traditional Lagrangean relaxation over q-routes and the one defined by bounds, degree and the capacity constraints. This is equivalent to a linear program with an exponential number of both variables and constraints. Computational experiments show the new lower bound to be superior to the previous ones, specially when the number of vehicles is large. The resulting branch-and-cut-and-price could solve to optimality almost all instances from the literature up to 100 vertices, nearly doubling the size of the instances that can be consistently solved. Further progress in this algorithm may be soon obtained by also using other known families of inequalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.