Bone marrow stromal cells (BMSCs) were reported to form floating aggregation of cells with expression of nestin, a marker for neural stem cells (NSCs). The purpose of this investigation is to evaluate the morphology and the molecular markers expressed by NSCs derived from these neurospheres. The BMSCs were isolated from Sprague Dawley rats and evaluated for osteogenesis, lipogenesis, and expression of fibronectin, CD90, CD106, CD31, and Oct4. The BMSCs were cultured with Dulbecco's modified Eagle's medium (DMEM)/F12 containing 15% fetal bovine serum, then with DMEM/F12 containing 2% B27, basic fibroblast growth factor, and epidermal growth factor. The cell aggregates or spheres were stained with acridine orange, which showed that the neurospheres comprised aggregated cells at either premitotic/postsynthetic (PS), postmitotic/presynthetic (PM) phases of cell cycle, or a mixture of both. The NSCs harvested from the neurospheres were polar with eccentric nucleus, and at either a PS or a PM cell cycle phases, some cells at the latter phase tended to form rosette-like structures. The cells were immunostained for molecular markers such as nestin, neurofilament 68 (NF68), NF160, and NF200 and glial fibrillary acidic protein (GFAP). Myelin basic protein (MBP), the pluripotency (Oct4, Nanog, and SOX2), and the differentiation genes (NeuroD1, Tubb4, and Musashi I) were also evaluated using reverse transcription polymerase chain reaction (RT-PCR). Nestin, NF68, NF160, NF200, GFAP, O4, and N-cadherin were expressed in the NSCs. The percentage of immunoreactive cells to nestin was significantly higher than that of the other neuronal markers. MBP was not expressed in BMSCs, neurospheres, and NSCs. The neurospheres were immunoreactive to GFAP. RT-PCR showed the expression of NeuroD1 and Musashi I. The pluripotency gene (SOX2) was expressed in NSCs. Oct4 and Nanog were expressed in BMSCs, while Oct4 and SOX2 were expressed in the neurosphere. This indicates that a pluripotency regularity network existed during the transdifferentiation of BMSCs into NSCs. Image processing of the neurospheres showed that the cells tended to form radial patterns. The conclusion of this study is that the NSCs generated from the BMSC-derived neurospheres have the morphology and the characteristics of neuroepithelial cells with tendency to forming rosette-like structures.