Analytical models for swelling of rubberlike materials are difficult to formulate, and restricted in actual application due to their need for simplifying assumptions. Tests conducted on laboratory size samples of swelling elastomers cannot reproduce actual oil well conditions, and cannot cover all possible variations of testing parameters. However, these laboratory tests do provide useful information about material response of swellable elastomers in various conditions, serving as a basis for analytical and numerical modeling. Properly developed and robust numerical models can be used to predict near-actual performance of elastomeric seals. The current chapter describes the use of numerical (finite element) simulation to investigate swelling elastomer seal behavior in downhole petroleum applications. Variations in sealing (contact) pressure are studied for seal length, seal thickness, compression ratio, water salinity, swelling time, and type of well completion (open-hole or cased-hole). Month-long swelling experiments on samples of two actual elastomers (Chapters 3 and 7) provide input to the numerical model in terms of real material and deformation data. On the basis of these results, petroleum engineers can make informed decisions about the selection of elastomer material and seal geometry appropriate for the well type and conditions encountered. Application developers and researchers can also find this investigation useful in performance analysis and design of swelling elastomer seals.