Images of the steady-state luminescence of passivated GaAs self-standing films under excitation by a tightly-focussed laser are analyzed as a function of light excitation power. While unipolar diffusion of photoelectrons is dominant at very low light excitation power, an increased power results in a decrease of the diffusion constant near the center of the image due to the onset of ambipolar diffusion. The results are in agreement with a numerical solution of the diffusion equations and with a physical analysis of the luminescence intensity at the centre of the image, which permits the determination of the ambipolar diffusion constant as a function of electron concentration.