Neutrosophic sets, expanded from the constructs of fuzzy and intuitionistic fuzzy sets, can accommodate degrees of truth, indeterminacy, and falsity for each element. This attribute equips them with an aptitude for a more refined interpretation of ambiguous or uncertain data. This study presents an innovative application of Neutrosophic Data Envelopment Analysis (Neu-DEA), incorporating pentagonal neutrosophic numbers in both input and output data. This novel methodology involves the transformation of traditional DEA models into a Pentagonal neutrosophic DEA model, subsequently converting it into a Crisp Linear Programming (CrLP) model. A unique ranking function is integral to this process. Performance evaluation of decision-making units (DMUs) is accomplished through the resolution of the CrLP model, with subsequent ranking of the DMUs based on their relative efficiency scores. The utility and effectiveness of this novel technique is validated through a numerical example.