Due to their high robustness and simple maintenance, induction motors (IM) are commonly applied in household appliances and industry. Recently, advanced control techniques are being applied to traditional controllers such as field-oriented control (FOC) and torque control (DTC). Dynamic performance improvement, hardware simplification and software resource reduction are some of the characteristics reported by these advanced techniques, where a comparison of the new proposal with a traditional structure is generally reported for its validation. However, an assessment between advanced techniques is usually missing. Therefore, we evaluated the traditional FOC and DTC with two additional advanced control modifications, fuzzy and predictive. The resulting six structures were numerically evaluated using MATLAB SIMULINK in a 5 HP four-pole three-phase IM and practically validated using hardware-in-the-loop (Typhoon HIL 402 and DSP TMS320F28035). Speed, torque, phase current and flux response are reported for the six controllers and practical insights are summarized.