To develop a deep learning-based method for fully automated quantification of left ventricular (LV) function from shortaxis cine MR images and to evaluate its performance in a multivendor and multicenter setting. Materials and Methods: This retrospective study included cine MRI data sets obtained from three major MRI vendors in four medical centers from 2008 to 2016. Three convolutional neural networks (CNNs) with the U-NET architecture were trained on data sets of increasing variability: (a) a single-vendor, single-center, homogeneous cohort of 100 patients (CNN1); (b) a single-vendor, multicenter, heterogeneous cohort of 200 patients (CNN2); and (c) a multivendor, multicenter, heterogeneous cohort of 400 patients (CNN3). All CNNs were tested on an independent multivendor, multicenter data set of 196 patients. CNN performance was evaluated with respect to the manual annotations from three experienced observers in terms of (a) LV detection accuracy, (b) LV segmentation accuracy, and (c) LV functional parameter accuracy. Automatic and manual results were compared with the paired Wilcoxon test, Pearson correlation, and Bland-Altman analysis. Results: CNN3 achieved the highest performance on the independent testing data set. The average perpendicular distance compared with manual analysis was 1.1 mm 6 0.3 for CNN3, compared with 1.5 mm 6 1.0 for CNN1 (P , .05) and 1.3 mm 6 0.6 for CNN2 (P , .05). The LV function parameters derived from CNN3 showed a high correlation (r 2 0.98) and agreement with those obtained by experts for data sets from different vendors and centers. Conclusion: A deep learning-based method trained on a data set with high variability can achieve fully automated and accurate cine MRI analysis on multivendor, multicenter cine MRI data.
Vascular stent is viewed as one of the greatest advancements in interventional cardiology. However, current approved stents suffer from in-stent restenosis associated with neointimal hyperplasia or stent thrombosis. Herein, we develop a nitric oxide-eluting (NOE) hydrogel coating for vascular stents inspired by the biological functions of nitric oxide for cardiovascular system. Our NOE hydrogel is mechanically tough and could selectively facilitate the adhesion of endothelial cells. Besides, it is non-thrombotic and capable of inhibiting smooth muscle cells. Transcriptome analysis unravels the NOE hydrogel could modulate the inflammatory response and induce the relaxation of smooth muscle cells. In vivo study further demonstrates vascular stents coated with it promote rapid restoration of native endothelium, and persistently suppress inflammation and neointimal hyperplasia in both leporine and swine models. We expect such NOE hydrogel will open an avenue to the surface engineering of vascular implants for better clinical outcomes.
An oleic acid-grafted chitosan oligosaccharide (CSO-OA) with different degrees of amino substitution (DSs) was synthesized by the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling reaction. Fourier transform infrared spectroscopy (FT-IR) suggested the formation of an amide linkage between amino groups of chitosan oligosaccharide and carboxyl groups of oleic acid. The critical aggregation concentrations (CACs) of CSO-OA with 6%, 11%, and 21% DSs were 0.056, 0.042, and 0.028 mg$mL -1 , respectively. Nanoparticles prepared with the sonication method were characterized by means of transmission electron microscopy (TEM) and Zetasizer, and the antibacterial activity against Escherichia coli and Staphylococcus aureus was investigated. The results showed that the CSO-OA nanoparticles were in the range of 60-200 nm with satisfactory structural integrity. The particle size slightly decreased with the increase of DS of CSO-OA. The antibacterial trial showed that the nanoparticles had good antibacterial activity against E. coli and S. aureus.
The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.