To develop a deep learning-based method for fully automated quantification of left ventricular (LV) function from shortaxis cine MR images and to evaluate its performance in a multivendor and multicenter setting. Materials and Methods: This retrospective study included cine MRI data sets obtained from three major MRI vendors in four medical centers from 2008 to 2016. Three convolutional neural networks (CNNs) with the U-NET architecture were trained on data sets of increasing variability: (a) a single-vendor, single-center, homogeneous cohort of 100 patients (CNN1); (b) a single-vendor, multicenter, heterogeneous cohort of 200 patients (CNN2); and (c) a multivendor, multicenter, heterogeneous cohort of 400 patients (CNN3). All CNNs were tested on an independent multivendor, multicenter data set of 196 patients. CNN performance was evaluated with respect to the manual annotations from three experienced observers in terms of (a) LV detection accuracy, (b) LV segmentation accuracy, and (c) LV functional parameter accuracy. Automatic and manual results were compared with the paired Wilcoxon test, Pearson correlation, and Bland-Altman analysis. Results: CNN3 achieved the highest performance on the independent testing data set. The average perpendicular distance compared with manual analysis was 1.1 mm 6 0.3 for CNN3, compared with 1.5 mm 6 1.0 for CNN1 (P , .05) and 1.3 mm 6 0.6 for CNN2 (P , .05). The LV function parameters derived from CNN3 showed a high correlation (r 2 0.98) and agreement with those obtained by experts for data sets from different vendors and centers. Conclusion: A deep learning-based method trained on a data set with high variability can achieve fully automated and accurate cine MRI analysis on multivendor, multicenter cine MRI data.
Convolutional neural network (CNN), in particular the Unet, is a powerful method for medical image segmentation. To date Unet has demonstrated state-of-art performance in many complex medical image segmentation tasks, especially under the condition when the training and testing data share the same distribution (i.e. come from the same source domain). However, in clinical practice, medical images are acquired from different vendors and centers. The performance of a U-Net trained from a particular source domain, when transferred to a different target domain (e.g. different vendor, acquisition parameter), can drop unexpectedly. Collecting a large amount of annotation from each new domain to retrain the U-Net is expensive, tedious, and practically impossible.In this work, we proposed a generic framework to address this problem, consisting of (1) an unpaired generative adversarial network (GAN) for vendoradaptation, and (2) a Unet for object segmentation. In the proposed Unet-GAN architecture, GAN learns from Unet at the feature level that is segmentationspecific. We used cardiac cine MRI as the example, with three major vendors (Philips, Siemens, and GE) as three domains, while the methodology can be extended to medical images segmentation in general. The proposed method showed significant improvement of the segmentation results across vendors. The proposed Unet-GAN provides an annotation-free solution to the cross-vendor medical image segmentation problem, potentially extending a trained deep learning model to multi-center and multi-vendor use in real clinical scenario.
Objective:Our aim was to propose a preoperative computer-aided diagnosis scheme to differentiate pancreatic serous cystic neoplasms from other pancreatic cystic neoplasms, providing supportive opinions for clinicians and avoiding overtreatment.Materials and Methods:In this retrospective study, 260 patients with pancreatic cystic neoplasm were included. Each patient underwent a multidetector row computed tomography scan and pancreatic resection. In all, 200 patients constituted a cross-validation cohort, and 60 patients formed an independent validation cohort. Demographic information, clinical information, and multidetector row computed tomography images were obtained from Picture Archiving and Communication Systems. The peripheral margin of each neoplasm was manually outlined by experienced radiologists. A radiomics system containing 24 guideline-based features and 385 radiomics high-throughput features was designed. After the feature extraction, least absolute shrinkage selection operator regression was used to select the most important features. A support vector machine classifier with 5-fold cross-validation was applied to build the diagnostic model. The independent validation cohort was used to validate the performance.Results:Only 31 of 102 serous cystic neoplasm cases in this study were recognized correctly by clinicians before the surgery. Twenty-two features were selected from the radiomics system after 100 bootstrapping repetitions of the least absolute shrinkage selection operator regression. The diagnostic scheme performed accurately and robustly, showing the area under the receiver operating characteristic curve = 0.767, sensitivity = 0.686, and specificity = 0.709. In the independent validation cohort, we acquired similar results with receiver operating characteristic curve = 0.837, sensitivity = 0.667, and specificity = 0.818.Conclusion:The proposed radiomics-based computer-aided diagnosis scheme could increase preoperative diagnostic accuracy and assist clinicians in making accurate management decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.