Abstract. Soil texture and soil particle size fractions (psf) play an increasing role in physical, chemical and hydrological processes. Digital soil mapping using machine-learning methods was widely applied to generate more detailed prediction of qualitative or quantitative outputs than traditional soil-mapping methods in soil science. As compositional data, interpolation of soil psf combined with log ratio approaches was developed to improve the prediction accuracy, which also can be used to indirectly derive soil texture. However, few reports systematically analyzed and compared the classification and regression, the accuracies of original (untransformed) and log ratio approaches, and the performance of direct and indirect soil texture classification using machine-learning methods. In this total, a total of 45 evaluation models generated from five different machine-learning models combined with original and three log ratio approaches–additive log ratio, centered log ratio and isometric log ratio (ALR, CLR and ILR, respectively), to evaluate and compare the performance of soil texture classification and soil psf interpolation. The results demonstrated that log ratio approaches modified the soil sampling data more symmetrically, and with respect to soil texture classification, random forest (RF) and extreme gradient boosting (XGB) showed notable consequences. For soil psf interpolation, RF delivered the best performance among five machine-learning models with lowest root mean squared error (RMSE, sand: 15.09 %, silt: 13.86 %, clay: 6.31 %), mean absolute error (MAE, sand: 10.65 %, silt: 9.99 %, clay: 5.00 %), Aitchison distance (AD, 0.84) and standardized residual sum of squares (STRESS, 0.61), and highest coefficient of determination (R2, sand: 53.28 %, silt: 45.77 %, clay: 53.75 %). STRESS was improved using log ratio approaches, especially CLR and ILR. There is a pronounced improvement (21.3 %) in the kappa coefficient using indirect soil texture classification compared to the direct approach. Our systematic comparison helps to elucidate the processing and selection of compositional data in spatial simulation.