Chronic right ventricular (RV) pacing can induce structural and functional cardiac deterioration. Because animal studies showed a benefit of left ventricular (LV) over RV pacing, this study compared the effects of chronic RV and LV pacing in children. Retrospectively, echocardiographic data were evaluated from 18 healthy children (control subjects) and from children undergoing chronic epicardial RV pacing (7 RVP) or LV pacing (7 LVP). Assessment included LV end-diastolic wall thickness (LVEDWT) and end-systolic wall thickness (LVESWT) as well as LV end-diastolic diameter (LVEDD) and end-systolic diameter (LVESD). The shortening fraction and eccentricity index (LV diameter/2 9 LV wall thickness) were calculated as measures of LV function and eccentricity, respectively. Duration of QRS and septal posterior wall motion delay (SPWMD) were used as measures of electrical and mechanical dyssynchrony, respectively. A p value less than 0.05 determined significance. As the findings showed, LVEDD, LVESD, LVEDWT, and LVESWT were not significantly different between the groups. The shortening fraction was significantly lower in the RVP (21.7% ± 6.0%) than in the LVP (32.2% ± 5.2%) or control (29.3% ± 4.3%) children. The systolic LV eccentricity index was significantly larger in the RVP (1.8 ± 0.2) than in the LVP (1.4 ± 0.1) or control (1.4 ± 0.2) children. The SPWMD was significantly larger in the RVP (338 ± 20 ms) than in the LVP (-16 ± 14 ms) or control (-5 ± 35 ms) group, whereas QRS duration was similarly longer in the RVP (157 ± 10 ms) and LVP (158 ± 22 ms) groups compared than in the control group (69 ± 7 ms). The authors conclude that LV function in children is preserved by chronic pacing at the LV lateral wall.Keywords Cardiac function Á Children Á Dyssynchrony Á Pacing Á Site Á Ventricular In children and adults with congenital or acquired atrioventricular (AV) block, the ventricular pacing lead is traditionally positioned at the right ventricle (RV) [16,19]. However, RV apex pacing causes an acute decrease in left ventricular (LV) function in animals [26], adults [6] and children [14,36]. During chronic RV pacing in children, LV function, morphology [30,31], and histology [15] are at risk for deterioration over time (for review see Karpawich [16]). Chronic RV pacing can eventually result in cardiac failure, which occurs in 6% to 7% of children [17,20,38]. Also, in adults, chronic RV apex pacing has deleterious effects (for review see Manolis [19]) and increases the risk of heart failure [1,28].Recognition of the possible harmful effects from RV apex pacing initiated the search for alternative ventricular pacing sites including the RV outflow tract, His bundle, LV wall, and biventricular pacing. Pacing at the His bundle is likely the superior approach [8], but appears to be