Discriminant graph embedding-based dimensionality reduction methods have attracted more and more attention over the past few decades. These methods construct an intrinsic graph and penalty graph to preserve the intrinsic geometry structures of intraclass samples and separate the interclass samples. However, the marginal samples cannot be accurately characterized only by penalty graphs since they treat every sample equally. In practice, these marginal samples often influence the classification performance, which needs to be specially tackled. In this study, the near neighbors’ hypothesis margin of marginal samples has been further maximized to separate the interclass samples and improve the discriminant ability by integrating intrinsic graph and penalty graph. A novel discriminant dimensionality reduction named LMGE-DDR has been proposed. Several experiments on public datasets have been conducted to verify the effectiveness of the proposed LMGE-DDR such as ORL, Yale, UMIST, FERET, CMIU-PIE09, and AR. LMGE-DDR performs better than other compared methods, and the corresponding standard deviation of LMGE-DDR is smaller than others. This demonstrates that the evaluation method verifies the effectiveness of the introduced method.