Traditional hand anthropometric studies are missing several key measurements that are important to designing products and tools for the hand. Specific anthropometric hand data important for hand product design such as gloves include finger lengths, crotch depths, palm and padding, back of hand, and wrist opening; these measurements can improve dexterity, gripping, hand entry, adduction, abduction, squeezing, etc. in the design. The purpose of this paper was to develop a process and special considerations for 3D hand scanning that could help guide future researchers when conducting more robust 3D anthropometric studies for the hand, as related to product design. Over the course of two years, the authors of this paper have developed and refined a process considerations model for 3D hand scanning. The model was developed based on three previous 3D hand scanning studies and over 200 subjects' hand scans. The process considers the subject and population, the 3D technology, landmark methods, hand scanning positions, the scanning research design, scan analysis, and methods of hand-product visualization using 3D hand data. As technology improves, our processes for collecting data need to adapt. New 3D scanning technology enables a more robust collection of anthropometric, ergonomic, and design data for the hand. Future 3D hand anthropometric data and design research will have a profound impact on future glove and tool design for a range of fields and consumers. The application of the 3D hand scanning process considerations model will enable innovative anthropometric and ergonomic research for the hand to occur, and will ensure the collection of accurate and reliable 3D hand data.