2021
DOI: 10.31590/ejosat.845467
|View full text |Cite
|
Sign up to set email alerts
|

Dinamit Destekli Terör Faaliyetlerinin Önlenmesi İçin Derin Öğrenme Temelli Güvenlik Destek Sistemi

Abstract: ÖzGünümüz toplumunda, insanları tehdit eden en önemli etmenlerden birisi terörizmdir. Terörizm bir toplumda, insanların düzen durumlarını bozarak, yaşam kalitesini etkilemektedir. Devletler ise terörle mücadele etmek için sürekli farklı yöntemler geliştirmektedir. Bu yöntemlerden birisi de terörle mücadele için makine öğrenmesinin bir alt alanı olan derin öğrenmenin kullanılmasıdır. Derin öğrenme, makine öğrenmesi alanında son yıllarda oldukça popülerlik kazanmıştır. Bu çalışmada, terör faaliyetlerini fark etm… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 19 publications
0
4
0
Order By: Relevance
“…This approach is that instead of the layers learning from the underlying mapping, the mesh now allows the mesh to conform to the mapping. This allows to train much deeper neural networks (Kaya, 2021). The residual learning block structure that makes up the network is given in Figure 3.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…This approach is that instead of the layers learning from the underlying mapping, the mesh now allows the mesh to conform to the mapping. This allows to train much deeper neural networks (Kaya, 2021). The residual learning block structure that makes up the network is given in Figure 3.…”
Section: Methodsmentioning
confidence: 99%
“…Then, 𝑥𝑥 is added to the 𝐹𝐹(𝑥𝑥) function to obtain the 𝐻𝐻(𝑥𝑥) function. This situation is expressed as 𝐻𝐻(𝑥𝑥) = 𝐹𝐹(𝑥𝑥) + 𝑥𝑥 (He et al, 2016;Kaya et al, 2020). In the classical network model, 𝐻𝐻(𝑥𝑥) is equal to the 𝐹𝐹(𝑥𝑥) function, while the original data is added to the input in the ResNet model (Toğaçar and Ergen, 2019).…”
Section: Methodsmentioning
confidence: 99%
“…VGGNet is a standard convolutional neural network architecture with multi-layer GPU support (Kaya et al, 2020). VGGNet architecture forms the basis of object recognition models.…”
Section: Figure 2 Vggnet Model Diagrammentioning
confidence: 99%
“…The deterioration of the railway line, the wear of the materials on the lines over time, foreign materials falling on the railway, and deliberate sabotage on the railway put the safety of railway passengers at risk. Considering all these factors, a fast and efficient inspection system is required to ensure the safety of railways [3][4][5].…”
Section: Introductionmentioning
confidence: 99%