Today, with the increasing number of criminal activities, automatic control systems are becoming the primary need for security forces. In this study, a new model is proposed to detect seven different weapon types using the deep learning method. This model offers a new approach to weapon classification based on the VGGNet architecture. The model is taught how to recognize assault rifles, bazookas, grenades, hunting rifles, knives, pistols, and revolvers. The proposed model is developed using the Keras library on the TensorFlow base. A new model is used to determine the method required to train, create layers, implement the training process, save training in the computer environment, determine the success rate of the training, and test the trained model. In order to train the model network proposed in this study, a new dataset consisting of seven different weapon types is constructed. Using this dataset, the proposed model is compared with the VGG-16, ResNet-50, and ResNet-101 models to determine which provides the best classification results. As a result of the comparison, the proposed model’s success accuracy of 98.40% is shown to be higher than the VGG-16 model with 89.75% success accuracy, the ResNet-50 model with 93.70% success accuracy, and the ResNet-101 model with 83.33% success accuracy.
ÖzGünümüz toplumunda, insanları tehdit eden en önemli etmenlerden birisi terörizmdir. Terörizm bir toplumda, insanların düzen durumlarını bozarak, yaşam kalitesini etkilemektedir. Devletler ise terörle mücadele etmek için sürekli farklı yöntemler geliştirmektedir. Bu yöntemlerden birisi de terörle mücadele için makine öğrenmesinin bir alt alanı olan derin öğrenmenin kullanılmasıdır. Derin öğrenme, makine öğrenmesi alanında son yıllarda oldukça popülerlik kazanmıştır. Bu çalışmada, terör faaliyetlerini fark etmek ve önlemek için derin öğrenmeye dayalı VGG-16 mimarisi temel alınarak yeni bir model önerilmektedir. Önerilen model ile güvenlik kontrollerinde kullanılan kamera görüntülerinden alınan görüntülerde, insan ya da tren rayları üzerinde dinamit tespit edildiğinde, durumu hızla belirlemek ve uygun önlemleri almak için güvenlik görevlilerini uyaran bir sistem gerçekleştirilmiştir. Çalışmada kullanılan veri seti, internet ortamından indirilen dinamit resimleri düzenlenerek oluşturulmuştur. Önerilen modelin performansını değerlendirmek için, insan ya da tren rayları üzerinde bulunan dinamit resimleri test edilerek, %98,4'lük başarı doğruluğu ve 0,024 kayıp oranıyla dinamit görüntüleri tespit edilmektedir.
Recently, coronavirus disease (Covid-19) has become a serious public health threat, spreading worldwide in a very short time and threatening the lives of millions. With the increasing number of cases and mutations, medical resources are being drained day by day due to the rapid transmission of the disease, and the health systems of many countries are negatively affected. For this reason, it is very important to use available resources appropriately and timely for the detection and treatment of the disease. In this study, VGG16 and ResNet50 deep learning models were used to quickly evaluate x-ray images and to make the pre-diagnosis of Covid-19, and an alternative model (IsVoNet) was proposed. As a result of the training of the models, success accuracy of 99.92% in the VGG16 model, 99.65% in the ResNet50 model and 99.76% in the proposed model were obtained. According to the results, it was observed that the models classified Covid-19 and normal lung x-ray images with high accuracy and the proposed model showed a high success rate at lower time complexity than other models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.