Abstract:The problem of finding the Lebesgue measure 𝛍 of the set B1 of the coverings of the solutions of the inequality, ⎸Px⎹ <Q−w, w>n , Q ∈ N and Q >1, in integer polynomials P (x) of degree, which doesn’t exceed n and the height H (P) ≤ Q , is one of the main problems in the metric theory of the Diophantine approximation. We have obtained a new bound 𝛍B1 <c(n)Q−w+n, n<w<n+1, that is the most powerful to date. Even an ineffective version of this bound allowed V. G. Sprindzuk to solve Mahler’s fam… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.