2021
DOI: 10.29235/1561-8323-2021-65-5-526-532
|View full text |Cite
|
Sign up to set email alerts
|

Diophantine approximations with a constant right-hand side of inequalities on short intervals. 1

Abstract: The problem of finding the Lebesgue measure 𝛍 of the set B1 of the coverings of the solutions of the inequality, ⎸Px⎹ <Q−w, w>n , Q ∈ N and Q >1, in integer polynomials P (x) of degree, which doesn’t exceed n and the height H (P) ≤ Q , is one of the main problems in the metric theory of the Diophantine approximation. We have obtained a new bound 𝛍B1 <c(n)Q−w+n, n<w<n+1, that is the most powerful to date. Even an ineffective version of this bound allowed V. G. Sprindzuk to solve Mahler’s fam… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?